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Abstract 

We present a detailed derivation of a new and efficient technique hased on the tech- 
nology of four-dimensional h&erotic strings, for computing one-loop amplitudes in gauge 
theories, along with expressions for the one-loop dimensionally regularized h&city ampli- 
tudes for the process with four external gluons. We also give a set of computational rules 
presupposing ignorance of string theory. 
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1. Introduction 

Gauge theories form the backbone of the Standard Model of particle interactions. Perturbative 

calculations in these theories are one of the important tools in searching for new physics through 

confronting theories with experimental results. Because of the present and likely future importance 

of hadron collider experiments to om understanding of the Standard Model, and to our ability to 

uncover the new physics hiding part of the electroweak symmetries and generating the observed 

fermion mass hierarchies and weak mixing angles, perturhative calculations in quantum chromody 

namics have special importance. They are important not only to precision measurements, but also 

to understanding from a theoretical point of view which QCD-associated predictions can be made 

reliably, and which cannot. 

These pertubative calculations have traditionally been done with Feynman diagrams. The 

relatively large value of the QCD coupling constant makes it desirable to carry out such calculations 

to relatively high order (large number of external legs or large number of loops); but the prolifera- 

tion of diagrams, and associated vertex algebra, makes such higher-order calculations increasingly 

diEcult. 

Recent years have seen substantial progress in improving the situation in tree-level calculations. 

Three main elements contributed to this progress: the use of a spinor helicity basis [1,2], such as 

that of Xu, Zhang, and Chang [3], for glum polarization vectors; the color decomposition of the 

amplitudes [4,5,6,7]; and an improved technique for calculating the kinematical coefficients of the 

different color factors - the Berends-Giele recurrence relations for amplitudes [8]. The tree level 

coior decomposiiion j5,9j and recurrence relations [lo] emerge quite naturaiiy irom string iheories. 

In this paper, we present a new and efficient technology for calculating the kinematical coef- 

ficients at one-loop, along with the explicit calculation of the one-loop helicity amplitudes for the 

90 + gg process. The technology is based on appropriately constructed heterotic string theories, 

although for practical applications one can rely on a set of rules presupposing ignorance of string 

theory. (The particular string theories we use are do not possess space-time supersymmetry; they 

contain a pure non-abelian gauge theory in the infmite string-tension or field-theory limit.) 

There are a number of advantages in nsing a string-based formalism. In the Polyakov string 

formalism the loop momentum is already integrated out in the initial expression, and thereby 

all algebra associated with the non-abelian gauge vertices is bypassed. Furthermore, the string 

amplitude is well suited to use of the same spinor-h&city basis that has proved so useful in tree-level 

computations. The spinor helicity basis simplifies expressions with polarization vectors contracted 
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into external momenta or other polarization vectors; and these are the only types of terms to be 

found in the string loop amplitudes. It thereby reduces greatly the complexity of the expression 

for the amplitude, at the very starting point of the calculation. In contrast, in the conventional 

Feynman-diagram approach, the initial expression contains polarization vectors contracted with 

loop momenta; and a simple technique for evaluating conventional Feynman loop integrals within 

the framework of the spinor h&city method does not exist [2]. 

In a theory of closed strings, at each loop order there is only a single diagram. This allows 

one to write a systematic and compact expression for the n-point amplitudes at all loop orders. 

The string also provides a color decomposition of the loop amplitudes automatically, just as it 

does for the tree level amplitudes: the full amplitude appears as a sum of gauge-invariant partial 

amplitudes multiplied by traces over color matrices. We have discussed the color decomposition 

of one-loop amplitudes, and the structure of the color-summed corrections to matrix elements, in 

a previous paper [ll]. The decomposition of the amplitude into smaller gauge-invariant partial 

amplitudes, each containing contributions from many Feynman diagrams, eliminates many of the 

large cancellations typical of Feynman diagram calculations in gauge theories. Another aspect of 

the string reorganization of the amplitude which exemplifies its advantage over the conventional 

Feynman-diagram approach is the absence of extra Faddeev-Popov ghost diagrams, even though 

the string formalism is completely covariant. For the string n-gluon amplitude at one loop, the 

ghost contributions are trivially accounted for in the string partition function. 

Since the gluon amplitudes contain the usual infrared divergences found in relativistic massless 

amplitudes [12,13], we have developed string versions of several variants of ordinary dimensional 

regularizetim, including its most conventional form. This conventional scheme is distinguished by 

its conceptual simplicity: as all states are continued uniformly to 4 - t dimensions, and by the ease 

with which one may compare to previous Feynman diagram calculations of Ellis and Sexton [14], 

which were done using this scheme. Other variants of dimensional regularization, in which all 

observed states remain in four-dimensions, are to be preferred in future calculations, because they 

reduce the amount of work required when using the spinor h&city formalism. 

The new approach also lends itself to a richer set of consistency checks than the conventional 

one. Besides the usual checks on unitarity, gauge invariance and cancellation of the infrared diver- 

gences - which here may be applied to the separate pieces in the color decomposition - one also 

fmds relationships between various partial amplitudes that emerge from the requirement of U(1) 

decoupling. We have discussed these decoupling identities at great length in ref. [ll]. Alternatively, 

these decoupling identities could be used to reduce the number of partial amplitudes that must be 

computed directly. 
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We have performed a number of explicit checks on our computation of the four-point helicity 

amplitudes. The most direct check of our amplitudes is the comparison [15] of our result for the 

next-to-leading order correction to the unpolarized cross-section to the previous computation ofEllis 

and Sexton [14]. This provides the first complete check on their results and verifies in detail our 

understanding of the dimensional regularization issues in the new string-based formalism. We have 

checked the gauge invariance of the amplitude. Using the new techniques for performing soft and 

collinear phase space integrations developed by Giele and Glover [IS], we have also checked that the 

infrared singularities have the correct form to cancel with the soft and colLinear phase integrations 

for the corresponding five-point cross sections, in accordance with the Lee-Nauenberg [13] theorem 

regarding the complete cancellation of infrared divergences in physical processes. Finally, we shall 

demonstrate explicitly that the optical theorem, relating the absorptive (‘imaginary’) part of the 

amplitude to tree cross sections, is satisfied. 

In deriving our string-based approach there were a number of seeming technical obstructions 

which had to be overcome. We have chosen to defer those details which are ultimately irrelevant 

to a practical use of the technology to a separate publication [17]. (One of these issues, that of the 

glum wavefunction renormalization, has been analyzed elsewhere [la].) 

In section 2 we review the framework of h&city amplitudes, which provide a convenient and 

compact basis for expressing the essential gauge-invariant content of gauge-theory scattering am- 

plitudes. The formalism we introduce makes good use of the spinor helicity basis of Xu, Zhang 

and Chang [3], which we review in section 3. We then review the color decomposition for one-loop 

amplitudes in section 4, and the structure of the four-dimensional heterotic string amplitude in 

section 5. The ‘moduli’ which appear in the string amplitude correspond to Schwinger proper-time 

parameters in field theory; we discuss this correspondence iu wctiuu 6. ‘;;e discuss ibe conslruction 

of string versions of dimensional regularization in section 7. We then show how to simplify the 

string amplitude in the field-theory limit in section 8, and present a set of rules for performing 

practical calculations in section 9. The use of these rules does not require any understanding of 

the intricacies of string theory (only their derivation does). The partial amplitudes for the physical 

h&cities of the four-glum process in a pure glue theory are given in section 10 and 11. The former 

section, devoted to the finite h&city amplitudes, also presents several checks on the answers using 

the expected symmetry properties of the partial amplitudes and using the decoupling equations. 

In section 12 we discuss some of the details of the infrared pole structures in different versions of 

dimensional regular&&m. In section 13, we present the results for the remaining ‘[E]’ h&cities, 

and show the answer obtained for the unpolarized next-to-leading differential cross-section in the 

conventional dimensional regularization scheme agrees with the result previously obtained by Ellis 
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and Sexton [14]. In section 15, we check the optical theorem for the different helicity amplitudes; 

we conclude with a few general remarks in the final section. 

We have also included a number of technical appendices. Appendix I contains a sample string 

model which contains a pure SU(N,) factor in the field theory limit, and appendix II contains 

some additional technical details. The notation and normalizations for string quantities are given in 

appendix III. The field theory limit of string expressions are given in appendix IV; these expansions 

are necessary for the derivation of a set of rules for the field theory limit. We summarize the 

Feynman parameter integrals required for evaluating the loop amplitudes in appendix V, and the 

integrals required for checking the optical theorem in appendix VI. 

2. Helicity Amplitudes 

In a traditional Feynman diagram approach to the computation of the next-to-leading eorrec- 

tions to unpolarized multiglum scattering, one would write down all the contributing diagrams, 

in terms of the external polarization vectors and momenta represented by the symbols pi and ki; 

perform all the algebra associated with the vertex factors; reduce all tensor integrals to scalar 

ones through a Passarino-V&man [19] procedure; recast the propagator denominators in each 

diagram in terms of Feynman parameters; perform the momentum integrals; perform the Feynmm 

parameter integrals; sum up the diagrams; construct the interference of the tree amplitude and the 

newly-calculated loop amplitude; and use on-shell identities of the form 

(2.1) 

followed by a great deal of algebra, to sum over h&cities. 

in ihe four-p&i amplitude, for each independent color structure, i&~e are forty-&ee fo14y 

independent terms arising from the number of ways in which four polar;::ation vectors can be 

contracted into each other and into independent momenta. At tree level, there are fifteen terms, 

so that in forming the the interference of the loop with the tree we would Cud 645 terms none of 

which would be expected to vanish trivially. 

However, the entire physical content of the amplitude resides in its values for physical helicities; 

the formal expression in term of the polarization vectors and momenta contains a great deal of 

redundant information because of gauge invariance and crossing symmetry. The spinor h&city 

basis [1,3] provides a means of writing down h&city amplitudes for processes with external vectors 

in a compact and efficient form. In fact, the whole strategy of computing an unpolarized amplitude 

changes: it is often more efficient to compute each h&city amplitude numerically (using complex 

floating-point arithmetic), and then to square and sun over helicities numerically to arrive at a 
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numerical evaluation of a matrix element, rather than squaring analytically and then evaluating 

the resulting differential cross-section numerically. 

We will find it convenient to work in a basis where all momenta are labelled as outgoing, SO 

that for a 2 -t n - 2 scattering process, kt,* < 0, and momentum conservation takes the form 

C;=, kj = 0. (This also changes the sign of the incoming h&cities.) We C~II order the amplitudes 

according to the net h&city, S = ICT=,O~I~ which ranges from S = n down by two units at a 

time, to S = 0 (for n even) or S = 1 (for n odd). 

Each h&city amplitude has a perturbative expansion, 

d,, (1+,2+, 3+, . . , n’) = d;= (l+, 2+,3+, . . ,n+) f &-‘Oop (1+,2+,3+, . . ,n+) + CJ(g”+‘) 

d,, (l-,2+, 3+, , n’) = d;= (l-, 2+,3+, . . . , n’) + &-“‘Op (l-, 2+, 3+, . . , n’) + O(gn+‘) 

R, (l-,2-, 3+, . ,n+) = Are (l-, 2-,3+, , n’) + d;-‘oop (l-, 2-, 3+, . . . ,n+) + O(g”+‘) 

where the powers of the coupling constant and the renormalization scale dependence are implicit 

in the d!.$“P. The lint two h&city amplitudes, with S = n and S = n - 2, are special, because 

the Parke-Taylor equations 1201 tell us that the tree-level amplitudes vanish; thus the expansions 

of these particular h&city amplitudes begins at O(g”) rather than O(g”-‘): 

R, (l+, 2+, 3+, .,n+) = d!,-‘Oop (1+,2+,3+ , . . . , n’) + o(g”+‘) 

A, (l-,2+,3+, . . . ,n+) = d;-loop (l-,2+, 3+, . .,n+) + O(gn+‘) 
(2.3) 

This in turn implies that the one-loop contributions to these amplitudes are infrared finite; and 

irrelevant to the calculation of next-to-leading (O(gz”-a)) corrections to any cross section. 

3. Review of the Spinor Helicity Basis 

The spinor h&city basis provides an efficient way of evaluating h&city amplitudes of vector 

particles in gauge theories. We will follow the form introduced by Xu, Zhang, and Chmg (XZC) 

(31, which we review in this section. 

To every massless four-momentum k, one can associate a pair of Weyl spinors (with opposite 

h&cities), lk*). These are the basic objects used in this formalism. Amplitudes will eventually be 

expressed in terms of the complex-valued spinor products, 

(kj-IkIt) and (kj+lkl-). (3.1) 

It is convenient to define abbreviations for the various spinor products and the Lorentz product, 

(jl) = (kjkl) = (kj-lh+) 

[j I] = [kj kl] = (kj+lkl-) (3.2) 

(j I) = (j I) [Ij] = 2kj. kl 
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The spinor products are antisymmetric, 

(i [) = - ifj) 7 lit = - vi1 

and can be evaluated explicitly using [3], 

(Elk,) = J(k; - kf) (k; + k;)exp(iatan(ky/k;)) - (1 ++ 2) 

= J e (k; + ikf) - (1 ++ 2) 
1 t 

(3.3) 

[h kal = sign(k:ki)((ka h))*. 

For each on-shell gluon carrying momentum k, one must choose a reference momentum q, 
where q1 = 0, k q # 0. The reference momenta (which can be different for different gluons) can 

be chosen to eliminate many of different invariants involving the polarization vectors. The spinor 

h&city basis for the glum polarization vectors is then 

cI+‘(k; q) = (4-i -rrr lk-) 

JZ(qk) ’ 
+)(k,q) z (q+$;Fl+‘, 

2 
(3.5) 

Because of the antisymmetry of the spinor product, these automatically satisfy the on-shell con- 

dition k E = 0. We use the convention that all momenta are outgoing; the effect of this is to flip 

h&city notation on an incoming line. Gauge-invariant quantities are independent of the choice of 

reference momentum q, because changing q just corresponds to a gauge transformation, 

Jz(qq’) 
$+)(k;q’) = &:+‘(k; 9.) + (qk) (q, k) 4 (3.6) 

which follows from the rearrangement or Schouten identity 

(12)(34)= (14)(32)+(13)(24) 

The Fierz identity, in the form [3] 

(3.7) 

(I-17’/2-) (3+/7r14+) =2(14)[321 (3-S) 

can be used to evaluate the dot products of polarization vectors (note also that (1-l 7J’ (2-j = 

(2+l rP 11’)). 

Given the reference momenta, the various dot products are simply 

EF’(kj; qj) 

kj . cl+)(k,; ql) = ($;;f;’ (3.9) 

kj . Ei-)(kt;ql) = $fii,,‘; 
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The fnst step in the string-based calculation of gluon amplitudes is indeed the choice of refer- 

ence momenta for the external gluons, and use of the spinor h&city basis. In making a choice of 

reference momenta, it is useful to keep the properties noted by Mangano et al. [5] in mind. With 

the first argument to a polarization vector denoting the momentum of the glum, and the second 

its reference momentum, these properties are 

q. d*)(k;q) = 0 

E$*)(kj; q) cj*)(kl; q) = 0 

c$@(kj;q). e{*)(k,; kj) = 0 

(3.10) 

so that it is desirable to choose the same reference momenta for all gluons of a given h&city, and 

to take this momentum to be the momentum of one of the opposite-h&city gluons. This will 

greatly reduce the number of non-vanishing pi CE~ invariants. Furthermore, within the set of choices 

suggested by these properties, it is preferable to choose a reference momentum that is cyclicly 

adjacent to the momentum of the glum, since that does not introduce spurious poles (which must 

cancel) in momentum invariants. 

In the computation of the four-point amplitude, examples of good choices of reference momenta 

are (k4,kl,kl, kI) for A(l-,2+,3+,4+), (k,,klrklrkl) for A(1+,2+,3+,4+), and (k,,kr,kl,kl) 

forA(l-, 2-, 3f, 4+). Good choices for the other partial amplitudes may be obtained by a r&belling 

of legs. These choices are not unique; other choices exist which are just as good. With these choices 

of reference momenta we find the following simplifications in computing the partial amplitude 

A(l-,2-,3+,4+), 

E, .EZ = El EJ = E, E, = E? El = EJ El = 0 ( kr cl = kr e2 = kl ~3 = kl . E, = 0, 

k3. cl = -ka ~1 , k, e2 = -kg Ed , kl. Ed = -kl . ~~ , kz . ~4 = -kn ~4 . 

~1, 63 = kz. Eskg. El/k2 k3 , 
(3.11) 

where the last line follows from an explicit computation making use of the Fierz identity (3.8). We 

have made use of momentum conservation in deriving some of these expressions. The reduction 

in the number of independent terms greatly reduces the labor in a calculation, from the point at 

which these expressions can be substituted into an emerging expression; as we shall see in section 5 

these simplifications can be used in their entirety in the very first expression of a string based loop 

amplitude computation. 

The ordinary (+, -) h&cities s&ice for next-to-leading computations in certain variants of 

dimensional regularization’, but for computations in the more conventional variant, one must also 

* In a rchme in which all helicitiea are created as four-dimeruiond ones, such as the four-dimenri0ne.l helicity 
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take into account the fact that vectors in 4-e dimensions have 2-6 rather than 2 helicity states. To 

do this in the framework of the spinor helicity basis, one introduces [zl] an additional ‘[El’-helicity, 

with the following rules in 4 - c dimensions, 

12. &*l)(k’;q) = 0 

E(*)(k; q) @(k’; q’) = 0 (3.12) 

c’l[‘“(k; q) . &‘l)(k’; q) = -J;\$ 

In the last expression, i, and iz run over the -C additional dimensions; in squaring an amplitude 

(or forming an interference), one must sum over these additional indices: 

b&i Ji’i’ _ bi’i, 
(-<) (-c) - (4) s;‘l:,s;l’:, = -6. (3.13) 

It will be convenient to abbreviate 6;“:, to btf,,. 

4. The Color Decomposition 

In analogy to the color decomposition of the tree-level amplitude [4,5,9], 

&,({k, uir 4) = g”-’ c Tr(Z-1’ T’-)A,(kd,), +,I;. .; kd,,), A,,,) (4.1) 
PCS.lZ. 

there is also a color decomposition of loop amplitudes [22], 

l”/~J+l 
Al-,OOP _ 

n - Sn 5 C G*n;j Ml)v..., /~(n))&;j (k~l),X~~);...;k~“),X~,)) (4.2) 
PES”IS,,j 

In these expressions, kc, Xi, and ai are respectively the momentum, h&city, and color index 

of the i-th external glum. The 7” are the set of hermitian traceless N x IV matrices (normalized 

so that Tr(T”Tb) = sab); .7,/Z, is the set of non-cyclic permutations of {l, . , n}; Gr,;j denote 

the double-trace structures 

Gr,;l (I,..., n) = Tr(l)Tr(P . ..T”“) 

= NC Tr(P . T”“) (4.3) 

Gr,,j (1,. ,n) = Tr(F .‘P-‘) Tr(FP .l’““), 

and S,;j is the subset of the permutation group S, that leaves the trace structure Grn;j invariant. 

(&,;I is just the set of cyclic permutations of n objects, Zn.) Four pure-glue amplitudes in SU(N), 

shemc to be described in section 7, the ordinary helicities in fact suffice to aU orders in pertubation theory. 
This was in fact the scheme that should have been implied in the discussion at the end of ref. [Zl], rather than 
Siegel’s dimensional reduction; the latter effectively treats all h&cities in four dimensions at tree-level, hut is 
slightly different in loop calculations. 
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the partial amplitude A,,;1 drops out since its coefficient includes a trace over a single SU(N) 

generator, which vanishes identically. In s umming a squared amplitude cover colors, however, the 

fact that the additional U(1) of U(N) d ecouples allows us to sum over U(N). (That is easier 

because the U(N) Fierz identities are simpler than their W(N) counterparts.) If we do that, we 

must retain AnF1 since its coefficient no longer vanishes trivially. In next-to-leading corrections to 

the cross section, it drops out anyway; but in higher-order corrections it does not. The decoupling 

equation for this partial amplitude could still be used to eliminate A,,;2, but that is not necessarily 

desirable, since form& which contain it may well be more compact than those which eliminate it 

in favor of a sum of A,;l’s. 

The four-point amplitude thus has the decomposition 

*‘-loop _ 4 - g’o& = ( 
IV Tr T”~(‘~T”~~‘~T”-(‘JT’-(‘))AI;1(~(1),~(2),~(3),~(4)) 

+&, ( 
Tr To-(‘)) Tr(T”-(‘,T”~(‘lT”-(‘,)A,;~(u(l); u(Z), u(3), u(4)) (4.4) 

+ c Tr(Ta-Wr(‘)) Tr(T ‘~(“T”-~‘))A~;3(~(1),~(2);~(3),~(4)) 
.es,;z: 

In the first term, the permutation o lies in the set of all permutations S1 of four objects, with purely 

cyclic ones removed; in the second term, the set consists of all permutations which are inequivalent 

under a cycling of the last three indices; and in the last term, o is again in the set of permutations 

of four objects but with two factors of Z2 removed, corresponding to exchanging the indices within 

each trace, as well as another Z2 removed corresponding to interchanging the two traces. (In this 

equation, we have abbreviated the dependence of the A,,j on momentum k, and h&city XL by 

writing the label I alone.) 

The one-loop partial amplitudes A,,j have properties analogous to those of their tree-level 

counterparts: they are gauge-invariant on-shell; satisfy a symmetry equation, 

VU E Sn;j, A,;j(C(l), . . TO’(~)) = A,;j(l, . . . , n) (4.5) 

and a reflection identity, 

A,;j(Rn;j(l, . . . ,n)) = (-l)nAn;j(l,. . . ,n) 

where 

fL;j(ilr. . . , in) = (ij-1 ,...,il,i,,...,ij 1. 
10 
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In the case of the four-point amplitude, these identities are 

&;1(1,2,3,4) = A1;1(2,3,4,1) = A1,,(3,4,1,2) = A4,1(4,1,2,3) 

&(1;2,3,4) = Aw(l;3,4,2) = A;z(L4,2,3) 

A&l,2;3,4) = A1;3(2,1;3,4) = A,;3(1,2;4,3) = A1;3(3,4;1,2) 

4,1(1,2,3,4) = 4,1(4,3,2,1) 

&(1;2,3,4) = h,z(l; 4,3,2) 

(4.8) 

In addition the partial amplitudes satisfy a set of decoupling equations which we have discussed 

in detail in ref. [22]. In the case of the four-point function, these take the form 

A;s(L2.3,4) = c A1;1(~(1.),~(2),~(3),~(4)) 
~ES*/Z, 

A4,2(1,2,3,4) = - c A.1:1(1,~(2),~(3),~(4)) 
rtZ,12J,4) 

= -;A&,2,3,4). 

(4.9) 

Using the decoupling equations, one can simplify the color-summed next-to-leading correction to 

the four-gluon process, 

.g, Wi41NL0 = 2gs~,j @? - 1) R= cEgz, A:... ‘(u)Aw(~) 

where we have abbreviated A,;j(u(l), . . , c(n)) by A,;j(D). 

The leading-order result has the form 

(4.10) 

.z, bGd& = g’N,1 (N: - 1) c lA:““(u)l* 
(J E s, ,‘Z. 

(4.11) 

The color decomposition emerges naturally from the h&erotic string amplitude, which we 

review in the next section. 

5. H&erotic String Amplitudes 

If we wish to write an SLI(N) gauge theory loop amplitude as the infinite-tension limit of a 

string amplitude, we must control the massless matter content of the string theory, because colored 

massless matter particles (if any) can run around the loops. In a string theory, control of the 

spectrum is particularly important, since even a single sector of a string theory typically contains 

different massless states whose contributions are summed together. (In contrast, in field theory, 

each different virtual particle has its own set of independent Feynman diagrams.) It is possible to 
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build heterotic string theories whose infinite-tension limit is a non-abelian gauge theory where one 

of the factors is an SU(N) with no matter fields. The technology needed for such a construction 

is precisely the one used to construct four-dimensional string models. We have discussed the 

construction of such models, using the fermionic formulation of Kawai, Lewellen, and Tye (KLT), 

in previous work [24]; a sample model is s ummarized in appendix I. We use a heterotic string 

because bosonic strings always contain unwanted massless scalars and tachyons, while consistent 

four-dimensional type II [25,26] and type I [27] superstrings do not have a rich enough variety of 

models for our purposes. 

There are three basic kinds of four-dimensional heterotic string constructions: bosonic fox-mu- 

lations 1281, fermionic formulations [29,30], and direct superconformal field theory constructions 

(311. (The appellations ‘bosonic’ and ‘fermionic’ refer solely to aspects of the string world-sheet 

and imply nothing about the spacetime nature of the models, which may be supersymmetric or 

nonsupersymmetric.) These formalisms have revealed a huge class of consistent four-dimensional 

superstring models; the freedom in constructing models is so large that string models with virtu- 

ally any low energy gauge group with rank 22 or less can be built. In this paper, we again use 

the fermionic formulation in the notation of KLT [29]. We have found the fermionic formalism 

to be particularly straightforward to use for constructing models as well as computing scattering 

amplitudes, although one could use other formalisms as well. 

It turns out that a fully consistent string is not needed for practical calculation, since in the 

field theory limit the details of the infinite tower of massive states is not relevant. (In particular, 

the modular transformation which relates the spectrum of massive states to the massless states is 

not important.) However. a consistent string does guarantee that no extraneous problems enter to 

affect the results. 

We now review briefly the salient aspects of the KLT construction. The construction is based 

on an analysis of the one-loop string partition function or world-sheet torus: one imposes on it 

the constraints of world-sheet reparameterization invariance, world-sheet supersymmetry, freedom 

from the conformal anomaly, one-loop modular invariance invariance [32]. One also demands that it 

contain a physically sensible spectrum, with an integral number of states appearing, each with the 

correct spin-statistics relation. (This last condition is actually equivalent to two and higher-loop 

modular invariance [30,33].) 

In the fermionic formulation all internal degrees of freedom (which carry the non-abelian 

gauge charges) are taken to be world-sheet fermions [34]. The degrees of freedom corresponding to 

uncompactiiied (genuine space-time) dimensions are left as world-sheet bosons. These satisfy the 

conventional world-sheet boundary conditions X(ul + 2?m,ol + 2?rm) = X(U~,~Z) on the one-loop 
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world sheet torus. Before imposition of the KLT conditions, each of the world-sheet fermlons can 

have independent boundary conditions 

$‘1(0* + 2?rn,rk7 + 2mn)= elni(Qln+81m)~l(~*r~2). (5.1) 

The points on the torus are parametrized by the complex quantity n1 +ruz where 7 is the modular 

parameter describing the ‘shape’ of the world-sheet torus. The modular transformations 

7 - -l/T, T-+7+1, (5.2) 

are the last remnant of reparametrization invariance on the world-sheet after gauge fking. 

Corresponding to each set of boundary conditions of the n+ world-sheet fermions is a one-loop 

fermion partition function on the torus 2~ [ $1 = n;z, 21[ ;:I, where 21 is the partition functions 

for a single complex fermion. (The explicit value of these partition functions in terms of B-functions 

is given in Appendix III.) 

The complete string partition function is an integral over all inequivalent tori of the separate 

world-sheet bosonic and fermionic contributions, 

The KLT construction imposes modular invariance separately on the fermionic and bosonic contri- 

butions. Note again that ‘boson’ and ‘fermion’ do not refer to the space-time properties but only 

to world-sheet properties; in particular, 2~ will contain contributions from states which are space- 

time bosom. At one loop, the ghost contributions enter trivially, and simply reduce the number 

of bosonic and fermionic degrees of freedom by two. In the KLT construction, the bosonic degrees 

of freedom are completely generic and require no special consideration. The choices of boundary 

conditions of the world sheet fermions, on the other hand, define the string model; different choices 

of boundary conditions on the world-sheet lead to different particle contents. 

Under the modular transformations (5.2), the single-fern&m partition functions transform as 

follows, 
1 

T---: 21 aI 

1 I 

PI 7 PI ~ ,zni(PI-lll)(u,-1/z)21 1 I -01 
(5.4) 

1+7+1: 2, 
ar [ 1 LA 

~ ,2d(ca;-~,+l/a)21 al [ 1 Pt - aI . 

Linear combinations of products of these single-fern&n partition functions, 

2F = c C$ZF 

s.B 

[$I = c4j24;;] I 

&B I=, 
(5.5) 
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will be invariant under the modular transformations, for appropriate choices of coefficients C$. 

KLT give a set of rules of dete rmining these coefficients so that the partition function is modular- 

invariant in addition to satisfying the other consistency requirements mentioned above. 

Given the partition function for a given string model, the computation of scattering amplitudes 

is straightforward. In the Polyakov formalism the amplitude is given by the expectation value of 

the vertex operators [35,23] of the theory using the world-sheet action for free femions and bosom, 

d;dns ({a;, ki, E;}) - 
I 

[DX][D$] exp [-S] V”’ (kIteI). . . V”” (k,,,En) (5.6) 

For a bosonic string, the world-sheet action S = (4nu’)-’ J dZ{ ~rvc3@i~~~X” corresponds to free 

bosom X’; it is a bit more complicated for a four-dimensional h&erotic string (see, for example, 

ref. [29]). The vertex operator for external glum states is given in appendix III. Using Wick’s 

theorem and expressions for the Green functions, these the expectation values can be computed 

explicitly. (The details of performing such computations in the operator formalism may be found 

in ref. [23].) 

The one-loop dimensionally-regularized amplitude for n external gluons in a heterotic string 
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theory can be written as follows,* 

~"/2-2tf/2(figpd~)n Ta',,ml . . .T'-,a"- 
/ & 1 (fi d&l d&z d&s & ) / (c d2e ) c Cf-334 a.6 

(5.7) 

- Bi3Bj3Xk; . kj GF 

+ ifi(B;30jrk; ej + Bi10j3kj E;) GF 

- ifi(&&,kj q - BjsOjrki Ed) &&ii - iij) 

+ B;dOjdE; Ej GF i: (Vi - Yj) [ 1 
+ ei3ei,ej3ejlEi . ERG& - Pj) 1 

where X = mz’ is the inverse string tension; the B;,j are Grassmann integration variables, and the 

ui are integrated over the torus specified by the modular parameter 7; ~5 and 6 are the various 

bouuhry condiiiiiuma for the w-urId-sheet fermions, over which one rmst XIII into vid:ir to obtti 

a modular-invariant answer; 2; is the partition function for a given set of boundary conditions; 

GF[ ‘$1 are the left-mover fermionic Green functions, with a, and & the boundary conditions 

on thz torus of world-sheet fermions associated with the gauge group of interest; GF[ z:] are the 

right-mover fermionic Green functions, with at and @T the boundary conditions of the world-sheet 

fermions carrying the space-time index (which occupies the fist right-mover position in the world- 

sheet boundary condition vector); GB are the bosonic Green functions (dots indicate derivatives 

with respect to ii); Our convention is that the left-movers form a bosonic string while the right- 

movers form a (world-sheet) superstring. Detailed expressions for all of these quantities are given 

in the appendices. The T” are the usual charge matrices of LI(N,). The overall factor of i ensures 

* This farm is valid in aU string sectors which do not contain world-sheet ser-modes, such as the rectors of 
intereat to us - those containing the gluona. 
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that the phase convention is the same as in a Feynman diagram computation. (The form of the 

amplitude given here differs slightly from the standard form, in that we have chosen to integrate 

over all YS, and have compensated by dividing by the volume of the torus, rather than fixing I+,.) 

The string amplitude may be diagrammatically represented in terms of a torus world sheet and 

punctures for the vertex operators, as depicted in fig. 1 for the four-point amplitude. 

This expression yields a properly normalized amplitude in (4 - C) dimensions, with the param- 

eter p being the usual scale parameter which absorbs the dimensions of the coupling constant. We 

shall discuss the details of the string versions of dimensional regularization in section 7. 

A rather striking feature of the amplitude (5.7) is that it is valid for arbitrary numbers of 

gluon legs. In contrast, the usual Feynman rules do not yield a comparable concrete formula in 

any straightforward manner. A field theorist would also find the simplicity with which the ghost 

contributions enter into the amplitude rather remarkable. The contribution of the world sheet 

ghosts (which are not trivially related to the space-time ghosts) amounts to removing two degrees of 

freedom from both the bosonic and fermionic partition functions with no other change whatsoever. 

This simplicity is an indication that the string amplitude contains a non-trivial rearrangement of 

contributions to the amplitude that would emerge from different Feynman diagrams in the usual 

method of calculation. 

In the string model we employ, the gauge group of interest is actually U(N,) rather than 

SU(N,). The extra ‘photon’ is an integral part of the string theory, and amplitudes with an 

external ‘photon’ receive non-vanishing contributions from the self-contraction left-mover Green 

functions SF[;]. The decoupling of this extra U(1) gauge boson in the infinite-tension limit can be 

used to derive various constraints on pieces of the gauge theory amplitude [ll]. The self-contraction 

Green functions enter only into the calculation of the A,,2 partial amplitudes whose coefficients 

vanish trivially for SU(N,) gluons, and for the most part we shall ignore them in the remainder of 

this paper. 

It will be helpful to distinguish three factors of the integrand: the left-mover contributions 
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(which are a function of the vi alone), 

Lc({vd) = / (&% dei2 ) 

(v; - vj) - 8;28j16”‘;i i<j 
(5.8) 

1 (v; - “j) - ~0~z0j16mi;i ^ GF[~~i(YI-~>l] 

The form of the left-mover Green functions associated with any given trace structure is actually 

quite simple. Every left-mover Green function is uniquely associated with a Kronecker &function 

which ties together two color charge matrices, and so the list of left-mover Green functions can be 

read off from the trace of color charge matrices. As examples, the following terms appear in the 

four-point string amplitude: 

where we have used the relation c?~[~:](v) = -GF[~:](- Y to rewrite the form appearing in ) 

equation (5.8). 
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The second factor of the integrand consists of the right-mover contributions, 

I%({&, ki, Ei}) = / (fi deis d&r ) 
i=l 

g exp [ - B;,Bj3Xki . kjGF[;;](Fi - Uj) 

+ i6(&8j,k; . Ej + O;,t’jakj . E;) GF 
(5.10) 

- iLi(f3i38i,kj ci - ejsej,ki Ej) bB(iq - iij) 

+ ei,ejlEi . Ej Go 

i ei3ei,ej3ejlEi Ej tiB(zii - i7j) 1 
This is a function of the iii alone, except for the zero-mode piece in the bosonic Green functions, 

which also depends on vi, In this part, one may use the spinor helicity simplifications, then 

perform the Grassmann integrals, and then integrate the ii; integrals by parts to remcwe all double- 

derivatives of the bosonic Green function, c?:B(P). As we shall discuss in section 8, integrating by 

parts is important for deriving a simple set of rules in the field theory limit. Before performing the 

integration by parts, there is a simple correspondence between the kinematic tensors and products 

of Green functions arising from the structure of the right-mover contributions (5.10); the integration 

by parts, however, destroys this simple correspondence. 

The third and last factor of the integrand consists of the partition function and parts common 

to both left- and right-movers, 

n 
E({vi,vi, ki,Ei}) = c C$2;(7) nexp [Xk;. kjGB(v; - vj)] (5.11) 

CB i<j 

The overall normalization will be denoted by ti. The partition function is composed of a product 

of zero-mode, left-, and right-mover pieces 

234 = (Im4-~+‘/*ZR;;ZL;; (5.12) 

Before summin g over the world sheet boundary conditions, in the Neveu-Schwarz sector, the left- 

mwer bosonic string partition function has a leading leading behavior of 9-l (where 4 = ezxir), 

corresponding to a mass-squared level of -&r/X, while the right-mover superstring partion function 

has a leading behavior of q-l”, corresponding to a mass-squared level of -&/A. The appearance 

of the dimensional regularization parameter c will be discussed in section 7. 
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As an example of the structure of a right-mover contribution and of the required integration by 

parts, consider the right-mover terms associated with the factor cI . ez in the three-point amplitude 

(n = 3) 

iv% . EZ ~&%z)(h &B(Y~) + kz E.&B(~))) 

t Ah . kdti&h)E3 kz + ~EJ(Y&~ kl)GF [ 1 ;; (v*,Y 
+ A(ES . klh k3 - Es k&l ka)GF[ ;;](i+)GF[ ;;](v11)GF[;;](~23)) . 

(5.13) 

These right-mover Green functions contain a eB(~Il)r and we must perform an integration by parts 

to remove it: multiply the offending right-mover terms by the common factors (5.11), integrate by 

parts with respect to one of the i?i, and then divide out the ccnmmn contributions to obtain the 

transformed form of the right-mover contributions. For the c?B(Y~~)C?B(Y~~) term, the appropriate 

variable is iii; the transformation takes 

~.(Yll)~Bh) - &(h)&(h)(kz. ktda(vn)+ks . k&B(%)+k2 k,&(ih)) (5.14) 

where the terms in parentheses have been pulled down from the exponentiated Green functions in 

equation (5.11). There are no surface terms since the torus has no boundaries; at the locations 

of the vertex operators an analytic continuation in the external momenta removes the potential 

singularities which might have obstructed the integration by parts [ll]. For the e:((iill)C?~(ljn) 

term, the appropriate variable is F~, and this transformation also removes the CB(Y~). 

In general, when we perform the -9i1 and Bi2 integrals, the sm,, will contract the indices of the 

charge matrices, and we will obtain an expression for the string amplitude as a sum of kinematic 

coefficients, 

4, s’ring = c ‘&(T’- . . .T’j) . . .TQ”’ . . T”-) i 
(5.15) 

where the sum runs over all trace structures with up to n traces, and all inequivalent ways of order- 

ing the charge matrices in any given trace structure. In this way the string induces a natural color 

decomposition on the amplitude; in the field theory limit the coefficient of each color trace struc- 

ture is a partial amplitude discussed in the last section. In order to evaluate a particular partial 

amplitude we need only focus on a particular trace structure in the full amplitude, which in turn 

implies that we need focus only on a particular left-mover Green function structure. Furthermore, 

the factorization of the amplitude into separate left- and right-mover factors implies that the ma- 

nipulations discussed above - substitution of the spinor h&city basis, the right-mover Grassmann 
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integrations, and the integrations by parts - can be performed on the right-movers independently 

of the structure of the left-movers. 

As an example of the expressions one obtains after such manipulations, consider the right- 

mover contributions to the h&city amplitude &(l-,2-, 3 f, 4+). If we use the reference momenta 

discussed in section 3, substitute the simplifications (3.11) in the right-mover terms, and integrate 

by parts to remove the remaining GB’s, the right-mover expression becomes 

R(l-,2-,3’,4+) = X’“t (12)’ 
4 (12) (2 3) (3 4) (4 1) [( 

&(G) - G:(Q)) (&(y31)&(y3d 

- ~B(YZI)~B(~%Z) + ~.(%I)~B(~I) + ‘++%I) - &i7n)) 
+ @(&I) - G’,(ii,,)) (&(Y&J(~%) - ~B(~J~)~B@,~) + &(%)&~(v,,,)) 
+ GF(Y~,)GF(~~~~)GF(~.~~)GF(~,~) - GF(~~~)GF(~~~)GF(~II)GF(YIS) 
+ GF(Y~I)GF(YJ~)GF(Y,,)GF(s~~~) - ~,(is,,)d,(~,,)~:,(~,,,)~:,(~,,,) 

- ~:s(i71L)GB(Y3l)~B(iil3)~B(~~Q) +~~(~31)cB(831)~B(~11)~~(~,3)] 

(5.16) 

This is an example of a ‘first-line’ simplification obtained using the spinor h&city basis; comparable 

simplifications emerge for the other h&cities. 

Before proceeding to extract the infinite-tension or field-theory limit, there are a number 

of technical points which must be addressed. In the corners of moduli space where the loop is 

isolated on an external leg, the standard Polyakov amplitude is in fact ill-defined, because of ‘O/O’ 

ambiguities which must be resolved. These can be resolved using a prescription due to Minahan 

[36] which preserves modular invariance. We have performed a detailed analysis of this question 

in previous work [la], and have also shown a connection between the Minahan prescription and 

possible off-shell continuations of the ampiitude [37], but ior caicuiaiions in ihe field theory limit 

using a dimensional regularization scheme it turns out that the coeficient of the ‘O/O’ vanishes 

because of a complete cancellation of the UV and IR divergences, just as in field theory when loops 

are isolated on external on-shell legs [38]. We also note at this point that with the use of the 

Minahan prescription, the wavefunction renormalization in the string theory vanishes (independent 

of the renormalization scheme), and so the amplitude (5.7) in fact id the S-matrix element as well. 

The vanishing of the coefficient of the ‘O/O' ambiguity means that this technical issue is in fact 

irrelevant to the derivation of the field-theory limit, and so we shall not discuss it any further. We 

will perform a closer examination of the vanishing of the coefficient in another paper [17]. 

Since the string model of interest does not possess space-time supersymmetry, the dilaton 

tadpole does not vanish. One might fear that this would lead to di&ulties with gauge invariance 

or decoupling, but a more detailed analysis [17] reveals that for OUT purposes this is not the case. 
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For practical computations, one may simply note that the would-be dilaton tadpole contributions 

come from an isolated region of parameter space, where the locations of all the external vertex 

operators come together, and therefore they can simply be dropped. 

The one technical issue that is important for practical calculations is that of regulating infrared 

divergences; we shall discuss this question in section 7. 

Before turning to that issue, we may note that although the moduli of the string amplitude, 7 

and the vi, may appear strange to a field theorist, they have a simple interpretation in as Schwinger 

proper-time variables; we discuss this interpretation in the next section. 

6. A Connection to Field Theory: Schwinger Proper Time 

At fist sight, the string amplitude (5.7) d oes not look much like an ordinary quantum field 

theory amplitude; in particular, the integration parameters or string ‘moduli’ may appear rather 

exotic innature. These parameters (or more precisely their imaginary parts) are in fact just ordinary 

Schwinger proper-time parameters of the same sort that one would encounter in field theory. 

This interpretation can be understood most easily in the operator formalism of string theory. 

In this formalism the one-loop string amplitude is written as a trace of vertex opertors separated 

by string propagators 

‘_ 
1 

Lo+Lo-2vzLo+io-2-~ 
v, 

1 

Lo + i. - 2 > 
(‘3.1) 

where the Vi are vertex operators, one for each external state, and l/(Lo + Lo - 2) is the string 

propagator. Lo - 1 is the world-sheet hamiltonian for the left-mover modes of a string while io is 

lau&xGan for the right-movers. The string propagator is a space-tirue scalar which propagates au 

infinite tower of states with increasing space-time spin; besides the usual vitrational string modes 

there is an overall translation mode which can be identified with the momentum variable of a point 

particle theory. (For simplicity’s sake we restrict our attention to bosonic string theory, but the 

essential features are identical in all conventional string theories.) 

The general form of the string theory loop amplitude (6.1) is analogous to that of a field theory 

loop consisting of a trace of vertices separated by propagators. There are, however, some general 

properties of a string theory, central to its computational simplicity, that are quite different from 

the properties of a field theory; for example, a single string propagator, devoid of Lorentz indices, 

propagates an infinite tower of space-time bosom, with ever increasing spins. For computational 

purposes, string theory takes vector and higher-spin states, and turns them into scalar-like states. 

One should contrast this with the field theory, in which the Lorentz structure of the Feynman 
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propagators and vertices becomes significantly more complicated as one increases the spin of the 

propagating states, leading to laborious tensor-loop computations. 

Another remarkable feature of oriented closed strings is that only one diagramma tic topology 

contributes at each order of perturbation theory. It is therefore possible to (effectively) integrate 

out the loop momenta at a given order in perturbation theory in one fell swoop and thus to write 

closed-form expressions like the one-loop amplitude (5.7). In field theory each loop amplitude 

would be associated with a number of different diagramma tic topologies, each in turn leading to a 

d&rent loop integral. 

In the operator formalism of string theory one may evaluate the loop integral (or trace) by 

introducing proper-time variables for each propagator: 

! 
Lo + Lo - 2 

= LB dt exp (-t( Lo + .& - 2)) =’ im dt exp ( - t(p’/2 f string oscillators)) (6.2) 

where p is the zero-mode or string momentum. 

At this stage, the introduction of a proper-time parameter is identical to the field theory case 

(6.2), so the (4-c)-dimensional zero-mode integrals produce a result identical to the corresponding 

field theory loop integrals (7.1). The string amplitude also contains non-trivial contributions from 

the string oscillators, of course. 

In string theory, the left- and right-mover parts of the theory are completely decoupled except 

for a ‘level-matching’ condition [23]. This condition demands that for any physical state, the left- 

and right-mover world-sheet Hamiltonians must take on identical values, so that (Lo - &)I$) = 0. 

One can include this condition in the propagator by introducing a phase in the proper time integral 

/- J 

a* l/(-b t L3 - 2) 1 (Lo - mb) = 0 
dt ,-L(Lo+io-l),‘~(L,-t,) = 

0 0 1 
(‘3.3) 

0, (Lo - &)I$) # 0 

since the eigenvalues oi Lo - i, are integers. Combining t and 4 gives a compiex proper-time 

parameter; by convention in string theory t is put in the imaginary part and $ in the real part. 

The sum of all complex proper time parameters around the loop 

7 E & $(ti f i+i) 
,=I 

(6.4) 

is the ‘modular parameter’. In the geometrical picture of string theory this parameter specifies the 

inequivalent tori over which one must integrate. 

Those parameters appearing in the conventional string amplitude which describe the locations 

of the vertex operators on the world-sheet torus are partial sums over the complex proper time 

parameters, 

“j e & &(tl + @I) . 
I=1 
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This simple interpretation of the string amplitude integration parameters in terms of proper- 

time variables makes possible the identification of string versions of dimensional regularization 

with their field-theory counterparts. We discuss the construction of string versions of dimensional 

regularization in the next section. 

7. Dimensional Regularkations in String Theory 

Bare loop diagrams in a massless quantum field theory possess both ultraviolet and infrared 

divergences. A variety of regular&&ion schemes could be used to regulate the ultraviolet diver- 

gences, though in non-abelian gauge theories various forms of dimensional regularization are by far 

the most popular. In dealing with infrared divergences, one must find a scheme in which one can 

regulate both the divergent phase space integrals over soft and collinear momenta in the higher- 

point tree diagrams, as well as the corresponding divergences in the loop diagram. For practical 

calculations, there is simply no choice other than a form of dimensional regularization. We should 

therefore construct a form of dimensional regularization for the new technology presented in this 

paper; to do so, we will construct a dimensional regularization for the string amplitudes. (We note 

in passing that although the string amplitudes do not require anultraviolet regulator, all relativistic 

quantum-mechanical theories in four dimensions, including string theories, with massless particles 

display tiared divergences in on-shell amplitudes with tied particle number [12,13], and thus 

four-dimensional string amplitudes require an infrared regulator as well.) 

In discussing dimensional regularization, it is helpful to keep in mind several different classes 

of particles: internal, or virtual, ones; external particles which are soft, or collinear with other 

external particles, and are thus unobserved; and external particles which are observed. The former 

two classes we shall lump together as ino3aeroed particles, v+ - MC the last ilass we shall term simply 

observed. Unitarity demands that the treatment of unobserved particles be uniform, independent 

of whether they are internal or external. It is also helpful to keep in mind the possibility of differing 

treatment of a gluon’s momentum and polarization vector. 

All dimensional regale&&ion schemes entail continuing the momentum integrals (both the 

loop integrals and the integrals over soft and collinear phase space) to 4 - c dimensions in order to 

render them finite. There are, however, at least three versions of dimensional regularization, which 

differ in their treatment of the polarization vectors (or helicities) of the observed and unobserved 

particles: 

(a) The original ‘t Hooft and Veltman scheme (HV) [39] m which all unobserved polarization 

vectors are also continued to 4 - E dimensions (so that unobserved gluons have 2 - e helicity 
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states), but observed gluons are kept in four dimensions (so that observed gluons have 2 helicity 

states); 

(b) the ‘conventional’ dimensional regularization’ (CDR) used, for example, by Ellis and Sex- 

ton [14] in which both observed and unobserved polarization vectors are continued to 4 - c 

dimensions (so that all gluons have 2 - t helicity states); and 

(c) a four-dimensional helicity scheme (FDH) which naturally arises when using the spinor helidty 

formalism. In this scheme all helicities (of both observed and unobserved particles) are treated 

in four dimensions (so that all gluons have 2 helicity states). 

We summarize the defining properties of the various regularization schemes in Table 1. 

Conventional ‘t Hooft-Veltman Four-dimensional 
helicitv 

Momentum Unobserved particles 4--E 4-e 4-r 

components Observed particles 4--E 4 4 

Helicities Unobserved particles 2-r 2-6 2 

Observed particles 2--E 2 2 

Table 1: Defining properties of the various dimensional regularization schemes. 

A satisfactory regulator must respect gauge invariance and unitarity. The conventional scheme 

is conceptually simpler, as all quantities are continued uniformly to 4 - E dimensiona, and its 

consistency is widely accepted i40]. W e will not address the coupieta cuuaiaieucy uf tie ‘i iiuuit- 

Veltman and FDH schemes in all situations, although the desired properties are not hard to prove 

at one loop. We will however show explicitly the consistency of the latter schemes in the four-point 

calculation. The FDH is similar to Siegel’s regularization by dimension reduction [41] since the 

number of helicity states is fixed at 2; however, in dimensional reduction the two physical states 

are split between a (4 -<)-dimensional vector (which h as 2 - E states) and < scalars which must be 

treated separately. 

(The reader might worry at this point about the use of helicity amplitudes in the context of 

dimensional regular&&ion, given the difficulties encountered with r5 and chirality in such schemes. 

* For historical reasons, this scheme (with the use of rpecific pole subtraction preacripion) is sometimes referred 
to as the C i;is scheme’. That nomenclature is misleading and confusing, since it is possible to uue an m 
prescription in any of the schemes we are dkc~~~sing. We will lherefore reserw the term ‘%$’ for the name of 
the ultraviolet subtraction prescription. 
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The definition of ys is however irrelevant to the calculations considered in this paper, and indeed 

irrelevant to any calculation not involving parity violation; the easiest way to understand this is 

to imagine performing the calculation without resorting to the spinor helicity basis. In that case, 

one would obtain an answer expressed in terms of the polarization vectors as formal objects, and 

no -(s’s would be encountered; at the very end (in principle even after construction of differential 

cross-sections and cancellation of infrared divergences), one could then use the spinor helicity basis. 

In the string-based calculation, we are effectively at the very end in the very beginning, since the 

starting expression (5.7) is already expressed in terms of dot products of external quantities.) 

While the conventional scheme is conceptually simpler, the other two schemes have practical 

advantages when using the spinor helicity formalism, which is most naturally used in four di- 

mensions. Use of the conventional scheme would require the computation of additional e-helidty 

amplitudes, using the conventions of section 3. While the formalism we present in this paper can 

of course be used for such a computation as well, it does entail extra (unnecessary) work. We have 

introduced the FDH scheme because it is in a sense the most natural within the context of the 

string formalism when using the spinor helicity basis. From a practical point of view, however, for 

the calculation of the one-loop corrections, the amount of work required in the FDH scheme or in 

the ‘t Hooft-Veltman scheme is the same; indeed, one may trivially include a parameter multiplying 

the difference between the two schemes. 

We turn now to the construction of string versions of these dim&nsional regularization schemes. 

Although the meaning of these regularization prescriptions in terms of the underlying conformal 

field theory on the string world-sheet remains obscure, it is also completely irrelevant to practical 

calculations. The important question is the equivalence of our string versions of these regularization 

prescriptions to their field theory counterparts. 

As we do not know how to map field-theory Feynman diagrams into the QCD amplitudes 

generated by the string, we rely on an indirect verification of the equivalence. We shall show 

that all the string versions preserve on-shell gauge invariance, and are thus at least consistent 

regulators; we shall argue that the field content of the string versions of the regulators reduce to the 

desired field content in the field-theory limit; we shall argue that the relations between the different 

schemes are precisely those expected between their field theory counterparts; and in section 13, 

we shall compare OUT results for the unpolarized corrections to gluon-glum scattering, using the 

string version of the CDR scheme, to the result of the previous Feymnan diagram computation of 

Ellis and Sexton [14]. We shall find complete agreement [15], verifying that our understanding of 

dimensional regularization in string theory is sound. 

The string versions of the various forms of dimensional regularization that we have constructed 
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are based on the work of Green, Schwarz and Brink (GSB) [42]. These authors started with a ten- 

dimensional superstring which was regulated by assuming that 10 - D of the spatial dimensions 

are circular with radius R. This compactification is analogous to the usual K&m-Klein compact- 

ifications of field theory, except that a non-integer number of dimensions are compactified. In 

field theory, a compactification to non-integer dimensions wao used by Siegel [41] to construct his 

dimensional reduction scheme. This scheme entails a compactification of the theory from four 

dimensions to 4 - E dimensions. In string theory, the GSB regularization scheme automatically 

leads to modular invariant string amplitudes, since it is nothing more than a simple toroidal corn- 

pactifzxtion of the string. The compactiflcation would result in the insertion of an additional 

factor (IEIT)~-~~‘F:~-~ (7) (defined in Appendix III) into the ten-dimensional superstring ampli- 

tude. Green, Schwarz, and Brink did not discuss the treatment of the external polarization vectors 

explicitly. 

For four-dimensional strings, the simplest regularization scheme to construct is the FDH 

scheme. The only modification required to the unregulated amplitude is a change in the dimen- 

sionality of the string zero-mode (or loop momentum) integral. The operator formalism of string 

theory is convenient for understanding the effect of this modifxation to the string amplitude, as it 

contains the loop momentum explicitly. 

One can perform the string momentum integral in 4 - l dimensions as follows. In string theory, 

the loop momentum integration consists of two types of contributions. There is a conventional 4 --E 

dimensional momentum integral 

where 

Pi = p - kl - kl - . . . - kiel = p + k; + . . + k, (7.2) 

and the proper time parameters t; are related to the conventional string parameters as described 

in the previous section. (The real parts of the string parameters are not relevant for the discussion 

of the string momentum integral.) The p! tenm arise from the string propagators, while the 

E; . pi terms arise from the zero-mode momentum dependence of the string vertex operators. For 

convenience we have exponentiated the E; pi terms; at the end, one must of course extract those 

terms linear in each and every polarization vector. In addition to the integral over momenta, in 

string theory one also has a discrete sum over the compactified zero-mode momenta and winding 

number modes. These will yield a factor of F:(T), whose definition is given in Appendix III. 

After completing the square (see also chapter 8 of ref. [23]), the string amplitude is then of the 
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form 

Xki kjhV<j(l +Im”;j/Imi)) + v’X(E; kj- Ej ’ kt)(hvj;/hT- l/2) 

- si Ej/21mT I( oscillator contributions 
> 

(7.3) 

where have changed variables to the imaginary parts of the conventional string parameters using 

the relations (6.4) and (6.5). Thus, the only explicit dimension dependence arising from the string 

zero-mode integration is an additional factor of (I~T)‘/‘F:(T), as in the work of GSB. 

The factor F:(T) maintains the modular invariance of the amplitude, but reduces to unity 

in the field theory limit. Thus the only modification in the field-theory limit is an additional 

factor of the Schwinger proper time (Imr) ‘1’. Except for those terms arising from contractions of 

the polarization vectors induced by the string loop momentum integral (these are precisely terms 

containing c?:B’s), in the fermionic formulation, the number of gluon helicity states circulating 

around the loop is determined by the right-mover fermion carrying the ‘spin’ index. This number 

is not altered by the GSB-type compactification procedure for the string loop momentum. (For 

consistency, when evaluating the contractions of polarization vectors with other polarization vectors 

induced by the string loop-momentum integral we assume that the loop momentum is continued 

to D > 4 so that the polarization vectors (and hence the helicities) remain uniformly in four 

dimensions. Further details of the string loop momentum integration will be provided in ref. [17].) 

By construction we leave all observable particles in four dimensions. 

We can now modify this scheme in order to match the two more standard forms of dimensional 

regularization. Let us consider fast the modification necesszy to obt&u ihe ‘i Xuu:l-Veltuum 

scheme. From Table 1, the difference between the ‘t Hooft-Veltman scheme and the FDH scheme is 

that in the FDH the number of unobserved - in our case virtual or internal - gluon helicity states 

is 2 while in the ‘t Hooft-Veltman scheme the number of helicity states is 2 - c. Thus, in order to 

obtain a string version of the ‘t Hooft-Veltman scheme we must remove a set of 6 massless bosonic 

degrees of freedom from the string loop. The generalized Gliozzi-Scherk-Olive (GSO) projector [43] 

which controls the string spectrum gives us the means to accompLish this; subtracting a set of E 

adjoint massless states from the loop turns out to be relatively straightforward. The contribution of 

an additionalmassless bosonic state (with its associated tower of massive states) transforming as an 

adjoint under the gauge group can be written as a constant times the difference of amplitudes in two 

different models, one with no matter content, and the other with additional scalars. Since each of the 

two amplitudes is modular-invariant, the difference is modular-invariant, and the contribution we 
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subtract from our original amplitude will thus be modular-invariant. This will provide a consistent 

string version of the ‘t Hooft-Veltnzan scheme. 

More precisely, the relation between amplitudes in the two schemes is 

ASf”(pure glue) = xDH(pure glue) - G (dcDH(pure glue + N, real scalars) - dEDH(pure glue)) 
, 

(7.4) 

We begin by considering the addition of a discrete set of N, adjoint real scalar states to to the 

Neveu-Schwarz sector of the string loop. This increases the number of propagating states in the 

loop from 2 (for the two gluon helicities) to 2 + N,. Given the model presented in Appendix I, we 

could, for example, replace the basis vector W, with 

w; = ( o~~so~oo~ ; (00;) (g) (00;)) . (7.5) 

This would add one complex (or two real) scalars to the massless content of the theory arising 

from the Neveu-Schwarz sector (corresponding to the fifth right-mover oscillator); these additional 

states will also transform as adjoints under the gauge group of interest, since their left-mover 

structure will be identical to that of the gauge bosons. In general, changing the sets of boundary 

conditions modifies the string amplitude in both the sum over boundary conditions and in the set of 

coefficients C$ in a rather complicated way. When we restrict OUT attention to the Neveu-Schwars 

sector, however, the modifications are quite simple, and for this reason we do not really need a 

specific choice of model; the fact that such choices exist s&ices. 

It turns out that again only the partition function is modified, 

ZHV(pure glue) = ZFDH(pure glue)-+ (ZFDH(pure glue + N, real scalars) - ZFDH(pure glue)) 
, 

(7.6) 

As we shall discuss in the following section, the partition function for the right-movers in a 

multigluon amplitude has the following expansion in powers of $1’ = e-*Imr, 

phase x G-l/’ 
( 

1 - 2#/’ x phase + . . . 
> (7.7) 

where the omitted term are irrelevant in the field theory limit. Changing the number of scalars 

changes only the coefficient of the Q -1/a from 2 to 2 + N., 50 that calculations are transformed to , 

the ‘t Hooft-V&man scheme by replacing the above expansion with 

phase x p --1/z (1 - 2 (I- i) @I/’ x phase+ ...) . (7.8) 

In field-theory, one moves from the ‘t Hooft-Veltman form of dimensional regularization to the 

conventional one by removing a set of ‘epsilon’ helicities for the external states 1211. The same is 
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true in string theory; in addition to the usual (t, -) h e a les, one now has ‘[E]’ helicities (or more li ‘t’ 

properly ‘[+I’ helicities) that must be summed over in constructing differential cross sections, 

(7.g) 
Using the roles described in section 3, one can perform such calculations in the framework of the 

spinor helicity basis. 

In traditional Feynman diagram calculations, one squares the amplitude and sums over helic- 

ities, and thus only scalar quantities appear visibly as the results of calculations. Quantities with 

indices - such as helicity amplitudes - do not appear explicitly. In the helicity approach, in 

contrast, the results of calculations do involve tensorial quantities. It is for this reason that the 

distinction between the ‘t Hooft-Veltman and conventional dimensional regulariaation schemes are 

sharper, and more apparent, than a mere difference in renormalization prescriptions. In particular, 

the use of either the ‘t Hooft-Veltman or FDH regulators are preferable to the use of the conven- 

tional scheme, since the latter requires the calculation of amplitudes with ‘epsilon’-helicities, which 

increases the amount of work involved. 

We summarize those calculational differences between the three schemes that remain in the 

infinite-tension limit in table 2. 

Factor of (I~T)-~/’ 

Remove E bosonic states 

&‘I i &‘-c) 

FDH ‘t Hooft-Veltman Conventional 

Yes Yes Yes 

No Yes Yes 

No No Yes 

Table 2: Modifications needed to construct various string versions of dimensional regularization 

from the unregularized string amplitude. 

The main motivation for choosing a dimensional regularization scheme is the issue of infrared 

divergences. Having chosen such a scheme, however, we must also handle the ultraviolet divergences 

in a conventional manner. Field theory computations are performed in terms of ‘bare’ quantities, 
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that is with an infinite renormalization scale. In order to re-express Green functions in terms of 

couplings and fields renormalized at physical scales, one must multiply by the appropriate (infinite) 

renormalization constant. In one-loop perturbation theory with a dimensional regulator, this cor- 

responds simply to subtracting the l/c ultra-violet pole; but of course there are finite ambiguities. 

Within any of three regulators, we can perform renormalization according to the MS prescription 

- subtracting only the ultra-violet pole - or according to the m prescription [44], where one 

subtracts 

from the n-point amplitude (00 = -llN,/(3. 16rZ)). In the string formalism, the amplitudes are 

ultraviolet-finite so long as the inverse string tension X is not actually zero; but in the limit, we of 

course recover the usual ultraviolet divergences of field theory, and we perform the subtraction in 

the usual manner. 

We turn next to the discussion of the gauge invariance of these various schemes. We want to 

show that the regulated amplitudes are invariant under the shift E; -+ B; + ki. 

In string theory, the substitution of the external momentum ki for the corresponding polar- 

ization vector pi formally leads to the vanishing of the unregulated amplitude, because one obtains 

the integral of a total derivative in punctured moduli space. We shall begin with a review of this 

formal proof of gauge invariance in the string theory. Start with the gluon vertex operator, as given 

in appendix JJI, and set E = k; the vertex operator becomes 

V(Y,i7)jz=* = -d&v5T,oj : ~i+(“)~j(v)~‘k’X(Y,~) : . (7.11) 

If we now compute expectation values using this vertex operator instead of the usual one for the 

iirst external &on, we obtain a result whose right-mover amI cvuw~~ expuuruiiai pari is a total 

derivative in VI; that is with ~1 replaced by k ,, the integrand of the amplitude (5.7) is a total 

derivative in ~1. As discussed above, the various dimensional regularization schemes modify only 

the partition function and possibly the external polarization vectors; the important point is that 

none of these changes alter the fact that the integrand is a total derivative in VI, because they do 

not affect the structure of the Green functions. As a result, the dimensional regularization schemes 

do not alter the formal argument. 

Since the torus has no boundaries one might then conclude that both the amplitude with 

a longitudinal external gluon vanishes since the integrand is a total derivative. This is almost 

right, but there are subtleties that must be addressed. The left-mover contains poles, and thus 

is not necessarily analytic everywhere in IQ. As a result, when we attempt to integrate the right- 

mover factors by parts, in order to prove the vanishing of the resulting longitudinal amplitude, the 
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derivative in cl can hit a left-mover Green function, and this in principle gives a non-vanishing 

contribution: for example, a,,“,;’ = z&~)(v~). The typical form of the V, dependence in the 

amplitude near a left-mover pole is 

(“, _ vj)-l+hi/* (7.12) 

which is not necessarily analytic as Y, + vj when the momentum invariants are in the physi- 

cal region. However, analytically continuing to sufficiently positive values of the s;j renders the 

expression completely analytic in “I so that the p1 derivative vanishes. 

There are further subtleties in the regions of the integral where the loop is isolated on the first 

external leg, and in the region where the loop is isolated at the end of a (dilaton) tadpole. The 

latter contribution can be eliminated in the string theory using Green-Seiberg [45] type contact 

terms, and in any event may be shown to drop out [17] in the gauge theory (infinite-tension) limit. 

In the former case, the momentum invariant in which we want to continue is k:, which vanishes 

identically on shell. Because of O/O ambiguities mentioned in the previous section, contributions 

from this region of module space must anyway defined by an appropriate ‘offsheet’ prescription 

during which the momentum invariant does not vanish. The appropriate analytic continuation can 

then be performed. The limit of vanishing momentum invariants must be taken at the end. A 

further twist occurs in this limit: we obtain terms proportional to (K’)’ where KS is a momentum 

invariant which vanishes in the on-shell limit. While an appropriate prescription for such terms 

may seem at first elusive, an analogous set of terms arises when working with ordinary Feymnan 

diagrams [38). In field theory calculations, the prescription that has been used is to take the limit 

K’ --t 0 fust, so that one sets such terms to zero; this is interpreted as a complete cancellation of 

infrared and ultraviolet contributions. The present formalism makes it possible to prove that this is 

the prescription consistent with gauge invariance, and we shall do so elsewhere [17]. It is amusing 

that the two regions of moduli space which contain subtleties in the proof of gauge invariance 

ultimately do not contribute to the regularized QCD amplitudes. 

8. Derivation of Rules for Field Theory Limit 

In order to calculate the gauge-theory scattering amplitude for n external gluons, we must 

compute the partial amplitudes A,;j(l, 2,. . . , n) for 1 5 j 5 17x/2] + 1. The full amplitude can 

then be obtained using the color decomposition (4.2), and the next-to-leading correction to the 

differential cross-section can be expressed in terms of these partial amplitudes using equation (9.16) 

of ref. [ll]. 

These partial amplitudes appear in the dimensionally-regulated amplitude (5.7) as the coef- 

ficients of the trace structures Tr(T’l . .Z’*J-I ) ~r(T”j . . To-); after integrating over the various 
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Grassmann parameters, we should pick the coefficient of each of these trace structures, and com- 

pure it in the infinite tension limit X - 0. As explained in section 5, the left-mover terms are in a 

direct correspondence with the trace structures, so we need not start with the full expression (5.8) 

and perform the Grassmann integrations explicitly; we can simply write down the left-mover Green 

functions associated with the given trace structure. Because of the factorization of right- and left- 

mover pieces (other than the zero-mode contributions in equation (5.11)), we will get the same 

initial right-mover integrand for each partial amplitude. The contributions to the different partial 

amplitudes will differ because of differences in pole structure and integration region determined by 

the different left-mover Green functions. 

The first step, as explained in section 3, is to choose a set of reference momenta for the external 

gluons, and substitute into equation (5.10) th e expressions resulting from use of the spinor helicity 

basis for the various dot products of polarization vectors and external momenta. 

If we then examin e these right-mover terms, we will see that every factor of the Grassmann 

parameter &, carries along a factor of 6, excepting the @ia multiplying the double derivatives 

of the bosonic. Green function (Ed). Thus after performing all the &J integrals, each term not 

containing double derivatives will carry an overall factor of X”-“‘/l (after combining with the 

factors of X in the over-all normalization). It is however possible (and desirable) to integrate the 

right-movers by parts and remove all double derivatives of the bosonic Green functions. (We showed 

in appendix II of ref. [ll] that it is always possible to do so. The procedure required is completely 

mechanical.) lifter such integrations by parts, the right-mover contribution contains only fermionic 

Green functions and single derivatives of bosonic Green functions; and all terms in the amplitude 

have a uniform factor of A”-‘+‘I’ in fr ont. In the following discussion, we shall assume throughout 

that such an integration by parts has been carried out. (This form is also preferable in that it makes 

the world-sheet supersymmetry of the right-movers manifest, in the sense that disappearance of the 

poles associated with the fictitious Fl-formalism tachyon is manifest. The manifest supersymmetry 

can be used as a check on the algebra - or on the computer program performing the algebra; 

substituting -GF[#?) for each dg(i7) should yield zero in this form of the amplitude.) These 

steps are common to all partial amplitudes, and thus need be done only once for each helicity 

contiguration. 

The presence of these explicit powers of X in front of the amplitude means that only those 

regions of the integral which yield an appropriate number of powers of X-l will survive in the 

gauge-theory limit of vanishing X. There are two sources of such powers: the large J.xn~ region of 

the modular parameter integral, and poles in the differences of the locations of the massless-vector 

vertex operators, V;j = vi - ~j. Even after extracting as many powers of X-’ as possible from poles 
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in the ~;j, it turns out that surviving contributions come only from the large-ImT region. The V<j 

pinch contributions yield trees of massless vectors sewn onto a loop; and large I~T means that 

only the massless particles survive to run around the loop, as depicted in fig. 2. 

In extracting surviving contributions to the amplitude, we must therefore ‘pinch’ together 

various sets of YS at a set of locations on the world-sheet torus, and then extract the large-ImT 

contributions to the modular-parameter integral. In this limit, the theta functions that comprise 

the various world-sheet Green functions have simple expansions in terms of ordinary transcendental 

functions, which makes it straightforward to compute the integrals explicitly. The types of term 

which arise in the field theory limit are similar to the types of terms one would expect from a 

Schwinger proper-time formulation of gauge theory after the momentum integrations have been 

performed. (The terms themselves are more compact than their Feynman diagram counterparts.) 

In the field theory limit we end up with a loop integral of the form 

I- d~T(~*)“‘-3+‘lle-~‘Kimr _ qnc - 2 + 42) - 
pK)“t-l+‘/l (A --+ 0) 

where nl is the number of surviving Y variables which remain after integrating out the pinched 

variables, and where K is a function of the momentum invariants and Feymmn parameters. (Each 

surviving Y variable is integrated over the torus, producing a factor of Imi; there are two powers 

of (Imr)-’ from the modular measure, and a factor of (Imr)- 1+/l from the partition function in 

(4 - c) dimensions.) Combining with the over-all uniform factor of Xn-‘+r/a, we have a factor of 

A”-“< left over. The integration of any pinched variable, as we shall see below, can contribute at 

most one power of A-‘; and since we have only n - ne pinched variables, we see that each integral 

over a pinched variable must contribute a factor of A-’ in order to cancel the overall powers of X 

and thereby obtain a non-vanishing contribution in the infinite-tension iimit. 

For the purposes of this section, it will be convenient to use the surviving remnant of confmmal 

invariance on the torus to fm the coordinate v,, of the last leg to be the modular parameter r. This 

does not change any of the counting arguments in the previous paragraph, since an explicit power 

of Imr will appear in the integrand to compensate for the missing integral. 

The remainder of this section is divided into five parts. In the first, we discuss the pinch 

integrations, followed by three parts in which we discuss in turn the large-ImT expansions of 

the left-mover, the right-movers, and the common exponentials. In the last part, we discuss the 

integration regions. 

8.1 Pinch Integrations 

We begin with a general discussion of the structure of pinch contributions. In a pinch region, 
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~ij = vi - vj -+ 0, the Green functions have simple expansions, 

exp (GB(v:j)) + I”ij/-“* X COIlStat 

1 
Gs(pij) + -z + O(V;j) 

‘I 

GF [ 1 s: (PGj) --+ A-- + O(Fij) (8.2) 
2?rLij 

GF I I ‘f Cvij) + & + O(l) 
In general we may pinch together different sets of vertex locations V; at several different locations 

on the string world-sheet. Each separate set of pinched variables may be integrated independently. 

The various pinch contributions may be classified by drawing ordinary one-loop @ diagrams with 

n external legs. The diagrams classifying the pinch contributions in the four-point amplitude are 

shown in fig. 3. Diagram 3a corresponds to a contribution with no pinched variables; diagram 3b 

to contributions with a single pair of variables pinched together; diagram 3c to contributions with 

two separate pairs of variables pinched at separate locations on the string world-sheet; and diagram 

3d to contributions where three variables are pinched together. These diagrams may seem a bit odd 

from a field theory point of view, since there are neither four-point vector interaction vertices nor 

ghost lines. The string theory includes those aspects of gauge theory interactions automatically. 

Momentum factors in the numerator can cancel momentum poles leaving contributions equivalent 

to four-point contact terms; and as discussed in section 5, the ghost contributions affect only the 

string partition function, and there they are already included in a strikingly simple manner. 

Consider iirst pinching only two variables together, ~i + Vj. In this limit, we can expand 

the integrand. The highest pole that can emerge from the left-movers is Y-‘, corresponding to 

the left-mover vacuum level of -4?r/X. Because of the manifest world-sheet supersymmetry of the 

right-movers zfter the integration by parts, the same degree pole does not exist (it would correspond 

to the propagation of a fictitious FI formalism tachyon), so the highest pole that can emerge from 

the right-movers is ii-‘, corresponding to the propagation of massless states. Thus the integrals 

we must consider are 

pi2 
m,n = 

I 
d’VJVijl- .w. ki I”“?? fi; (8.3) 

where m 2 -2, n 2 -1, and the factor of IU~jl-xki ‘*iI* comes from the pinch limit of the expo- 

nentiated Green functions (5.11). If the orders of the left- and right-mover poles are not identical, 

the phase integration makes the integral vanish, 

pU 
m.n = sm,,py. (8.4) 

Thus we need consider only the case m, n 2 -1. For the lower bound, we iind 

J @Vi IYij( 
1 279 

IfALi~ki,* = -J& . kj . 
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so that we would obtain the factor of A-’ necessary for a contribution to survive in the infinite- 

tension limit. Other integer powers of lV;jl correspond to the propagation of a massive string state; 

these yield expressions of the form (Xki kj - integer)-’ which fail to produce an overall factor 

of A-‘, and thus are not relevant in the field theory limit. In the infinite-tension limit, we can 

therefore summ arize the pinch integrals in the following form, 

I%:?% = L-lb1 x (- A;ykj) (8.6) 

Now, each left-mover and each right-mover Green function, whether fermionic or bosonic, 

contributes a single pole of its argument in the pinch limit of its argument. Thus the only terms 

which survive are those which have exactly one left-mover and exactly one right-mover fermion with 

an argument of the pinched variable. Other terms vanish. The contribution of each surviving term 

is given by the following rule: remove the pair of Green functions that produce the pole, replace it 

with the value from equation (8.6) times the appropriate signs from equation (8.2), and continue 

with the analysis of the other factors in the term. In the other factors, one must set V; = ~j, which 

substitution we perform by replacing v,i,(i,j) with Vm.=(i,j). This procedure generalizes trivially 

to pinch structures such as that depicted in diagram 3b, with pinches at different locations on the 

whole, since these pinches are independent, and may be treated independently. 

In the particular case of the four-point amplitude, we need not worry about pinching together 

more than two variables to one point, as depicted for example in diagram 3d, because in these 

contributions the loop is isolated on an external leg, and as discussed in section 7, the contribution 

therefore vanishes in dimensional regularization because of a cancellation of ultraviolet and infrared 

regions. 

In general, of course, there will be nontrivial contributions from pinching together some subset 

of more than two variables {upi }T=,, leaving the remaining ones ({v.~};~,P) unpinched. In this case, 

we will again find that only terms which lead to single left- or right-mover poles in the various pinch 

variables survive; and it is possible to perform the integral in a manner analogous to that above. 

(See equations (7.6-7.8) of ref. [37] f or an example.) However, it is possible to derive a simpler 

set of roles for the results of such integrations. We defer the discussion of a set of simpler roles 

regarding the multi-pinch structure [46] since these are not needed for the four-point amplitude 

discussed in this paper. 

8.2 Large Proper Time Expansions 

After integrating out all the pinched variables, we must take the large Imr limit in order to 

reduce the string loop into a field theory loop. To understand the structure of the surviving con- 

tributions as Imr + 00 we should therefore must consider the expansion of the partition function 
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and the Green functions in powers of $I2 = e-“Imr. The integer powers of $I* correspond to 

mass[-squared] levels of the string in units of 47r/X. As we shall discuss later in this section, the 

correspondence can be understood simply through the interpretation of of I~T as a Schwinger 

proper-time parameter; in ordinary field theory, contributions from massive states would also be of 

the form e@“” where t is a proper-time parameter. Terms with negative powers of $1’ would cm- 

respond to the propagation of tachyonic states in the loop, but these are removed by the generalized 

GSO projector; terms with positive integer powers of $1’ would disappear in the infinite-tension 

limit, because they would fail to produce inverse powers of X in front of the integral. ID. this fashion, 

the massive tower of states in the string disappears, as expected, in the infinite-tension limit. Only 

terms with no surviving integer powers of $I* will give rise to massless-particle contributions in 

the gauge theory; and such contributions can only arise in certain sectors of the models. In the 

case of the particular model we are using, there is only one sector with massless states - the 

Neveu-Schwarz sector or WC, sector in the notation of KLT [29]. 

In any term in the expansion of the integrand, the powers of ill2 coming from the left-movers 

are accompanied by powers of ei=Rer, while the powers of $I2 coming from the right movers are 

accompanied by powers of e-irRcr. Thus unless the left-movers supply the same number of powers 

of $1’ in any given term as do the right-movers, there will be a surviving factor of efirRe TX in’e~er, 

and the Re r integral will kill the term. That is, the Re7 integral (which in the field theory limit 

varies between -l/Z and +1/Z) enforces the level-matching condition of the string, and allows us 

to consider the expansions of the left- and right-movers separately. (The origin of level matching 

conditions in the integration over the real parts of the parameters should come as no surprise, since 

that is precisely the role the real parts play in the operator formalism.) 

In this limit, the Green functions behave as follows, 

‘“P(GB(Y)) -t exp(Im7(fi2 - ICl)) x constant 

Go + i (-sign(C) + ‘Z) 
. 

GF 
1 

‘f](v) + -isign (e ni.ign(~)R.ve-*Imr,ir, _ $/Se niRs re--*isign Re Ye* Im +,pd*n(b,p 

+,S*iRe re-ni.i(m(~)RC”e*Imr,~,el*i.ign(~)8 
> 

GF 
[ 1 

‘f (ii) + +isign(l) (e- *..,gn(~)Rsue--*Imr,~, _ Q1,3e-*iR~re+ni~i~n(l)Rc~enimrl~le-l*i.i~n(t)D 
> 

(8.7) 

where ti = Imv/Im~ = -Imii/Imr. The left-mover partition function in the Neveu-Schwarz 
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sector, which contains the gauge bosom, goes as follows in the large Inn limit, 

1 1 &L 
2L - 

-p,-z*iRcr(l + 24~e2’iRer) 

PL 

( 

Len 0I.L 

x 1 _ 2pedleI 2 cm 2~p~j + 4@eZ*’ ” T F CO6 2rPLi CO6 2XfiLj 

i=l i<j=l 

(6.8) 

In the following discussion, we will find it convenient to distinguish between the d&rent types 

of terms in the left-mover partition function. For the sample model of appendix I, the CJ($‘/‘) 

left-mover contributions to the partition function can be grouped into three types: those associated 

with the SU(N,) gauge group G of interest ( h w ere NC = 9 for the model in appendix I), those 

associated with the secondary SU(N:) gauge group G’ ( h w ere N: = 9 for the model in appendix 

I), and those associated with any re making string gauge groups. Labeling the the world-sheet 

boundary conditions associated with gauge group of interest PC and those associated with the 

secondary gauge group as PC, the O(G-ll’) terms in the partition function can be rewritten as 

follows, 

1s 
-2Q-l,Se*iRer 

5 
cos ZXPLj = -&j-We”‘Re7 

( 
Nc cos(2nPc)+N: cos(Zn/3c~)+ c CO6 2KpLj 

> 
j=1 j=N.+N:+l 

(8.9) 

These expansions might seem complicated at first sight, but as we shall see, combinations of 

Green functions and partition functions always yield simple expressions. The simplifkations result 

from the constraint that only terms not exponentially suppressed in Im7 survive. Furthermore, 

the generalized GSO projector (which arises from the summation over string world-sheet boundary 

conditions) removes all contributions in the field-theory limit from states which decouple in that 

limit from the SU(N,) gauge group of interest. 

8.3 Expansion of the Left-Movers 

Let us consider first the structure of the left-movers. We must extract the coefficient of the 

4” term from the product of the Green functions and the partition function. In expanding this 

product, there are in principle four possible ways of obtaining the two powers of @I/’ needed to 

cancel off the leading i-’ from the left-mover partition function: (a) a power of 6 from the partition 

function, combined with the leading (4”) power from the Green functions (b) a power of 4 from one 

of the Green functions (c) one power of p -lf’ from the Green functions, and one from the expansion 

of the partition function, or (d) two powers of LJ -1/Z from two different Green functions. 

From equation (8.7), we see that the leading term in the expansion of the left-mover Green 

function GF[lr] contains a decaying exponential in Icily Jmr. A product of such terms alone would 
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fail to produce any powers of X-’ after performing the Imr integral, and would therefore vanish in 

the field theory limit. (In the region where the tii vanish, one fails to obtain the required powers 

of X-l, except for th pinch limits discussed above.) On the other hand, the coefficients of the g1j2 

and 6 terms in the expansion of the Green functions contain growing exponentials in the Ifiil Im7 

that can cancel the decaying ones present in the leading-order term. Thus the only terms that will 

survive are those with an appropriate combination of leading-order and higher-order terms from 

the Green functions. In particular, at least one of the powers of ill3 must come from the Green 

functions, and so alternative (a) is not viable. 

For the left-movers of the model in Appendix I, we may group the world sheet ‘time’ boundary 

conditions, which control the generalized GSO projection into triplets (W + 0. WI, W + 1. W,, W+ 

2. WI). Each of the time-boundary conditions in any given triplet shares the same coefkient 

Cr”, since WI has a zero in the first right-mover position or “spin-component” (which denotes the 

world-sheet fermion carrying the space-time index) and the coefficient Cr’ = - cos(Z?r&)/M = 

(-l)noinr+n3+nr+1/M where fi z CT=, n$Wi and M = 48 for the model in Appendix I. In our 

model, the complex exponentials e--2ri@a and e-‘riaG are simply the cube roots of either 1 or -1, 

and so will vanish when summed over all world-sheet time-boundary conditions. Only terms where 

the factors of e*ari80 completely cancel can survive. This tells us that terms where the @ comes 

from the third term in the expansion of a single Green function cannot contribute, because these 

would not give rise to an appropriate ‘interference’, so option (b) is not viable either. 

We are thus left with the two alternatives (c) and (d). In general, when we extract terms 

proportional to $/’ from a product of Green functions, we will end up with a factor of the form 

exP [(IPkll - C lcdjl) hr] . 

As mentioned previously, in x&r to avoid an eventual eLzoponential suppression in Irwr, the sum 

must add up to cancel the leading term within the exponential exactly. This will happen only if 

each 17; appears once with a positive and once with a negative sign after expressing the absolute 

values in terms of the 6is directly. After fixing v,, = I~T, that is fi,, = 1, we may divide the 

integration over the fi; remaining after the pinch integrations into different regions, where in each 

region these variables have a definite ordering, for example fi, < tz 5 . . cnml < fi,. We will 

call each of these orderings an integration ordering. This ordering can be given a diagrammatic 

interpretation in terms of the labels of the legs attached to a loop as depicted in fig. 4a. 

In this particular ordering, we will avoid an exponential decay only if the first term inside the 

exponential is 6. 3mh,lm.i T and if the terms inside the sum have the form Vj,j+l. Such terms are 

an example of a cyclic set: given a sequence of n variables { v~,. . , v,}, the corresponding cyclic 

set is the set of differences ~ij of the form ~j,j+~ (where the indices are taken modn). We shall 
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term a cyclic set indivisible if the underlying sequence of variables - the base set - cannot be 

partitioned so that the cyclic set is the union of the cyclic sets generated by the different partitions. 

For example, given the sequence of four variables y , . . , “4, then {Y~z, ~13, “31, “41) is an indivisible 

cyclic set; {Y~z, vg(} is a divisible cyclic set; and {v12, v13, v,(} is not a cyclic set at all. A m-times 

divisible set is one that can be partitioned into m indivisible cyclic sets. 

As noted in section 5, the left-mover Green function are in one-to-one correspondence to the 

trace structures appearing in the amplitude. For example, the left-mover Green functions associated 

with Tr(!PT’~ . .T”-), and thus contributing to A,+(l,Z,...,n) are 

where the sign comes from the Grassmann integrations and from replacing kF[ z,“]‘s with GF[ ;,“]‘s, 

/ @dOtI dOi2 ) [-8,,18,,1][-8,,181,1]i-8*,~83,1]...[-8,-1,~8”,1] 
i=l 

= 
G 

fid&, d&z ,-Ox:,,,) 

x (-l)n-l~~[~~](Y~.~)~r[ ;$-vI1)~F[ i;](-v23). .G~[ ~j(-v,,--l,,,) 

(8.12) 

which reduces to equation (&Ill), since the Grassmann integrations yield unity. The arguments 

of the Green functions in these equations are a cyclic set (or more precisely the negatives of the 

arguments are a cyclic set generated from vIr.. . , I/,,), and we will thus call the product of Green 

functions itself a cycle. Similarly, we wiii refer to a product oi Green functions whose arguments 

are a divisible cyclic set as a divisible cycle of Green functions. 

The expansion of the cycle of Green functions in equation (8.11) will yield a single power of 

$1’ with no accompanying exponential suppression only for the integration ordering 61 5 ta 5 

. . i+,-l < I+, = 1 depicted in 4a and the reversed ordering I&-~ < ti,.,n-2 5 . . i$ 5 C,, = 1 depicted 

in 4b, since only for these orderings will the factor multiplying the Im7 inside the exponential 

of equation (8.10) vanish. (Variables that have been eliminated through the pinch integrations 

are of course omitted from the ordering.) In the first ordering the factor of $/’ emerges from 

GF[;~](vI+), while in the reversed ordering, the factor emerges from G,[“,~](-&-I,~). 

The left-mover fermionic Green functions always come in (divisible) cyclic sets, where each 

indivisible cyclic set is associated with a single trace. In the full string theory, there is no limit 

(up to the number of Green functions) to the number of indivisible cyclic sets that can appear in 
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any term; but in the infinite-tension limit, as pointed out above, each indivisible cyclic set also 

carries a power of $I’, and we can have no more than two if we want to obtain a non-vanishing 

contribution. The only surviving trace structures in the gauge-theory limit are those with one or 

two non-trivial traces corresponding to cases (c) and (d), respectively. This argument is unaf&cted 

by the pinch integrations, since a cyclic set cannot be pinched off [ll]. 

In case (c), which arises in the computation of A,,;1, the other power of @If1 must come from. 

the expansion of the partition function. In the partition function, the $1’ is multiplied by a sum 

over oscillators. The sun over all boundary conditions with coefficients C$ which builds up the 

generalized GSO projection operator will eventually leave only the sum over those oscillators that 

correspond to the gauge group of interest; there are N, of these for an SL’(N,) model. This will 

yield an explicit factor of N,, which we have anticipated in the definition of the trace structure 

GI,;~. Let us consider tirst the contribution of two left-mover Green functions to A,;I: 

$- xC$ZL(-l)“-‘G~ 

c m 

[~~]i-y13jc~[~~](y1~1 

--t (-l)“--’ 
N, Cc? [p- 

kl 

x (-i) (e 
r;~e~,e-*,“2’,Imr ~~l/~,*iR~‘~-*‘Re”,,~Tl~~/Im~,l~i~a 

> 

x (+i) (e 
wi~eur,e-r~~zIim7 _~l/l.niRor,-*iRaul,,*l~~~IIm~,-~niPc 

> 
(8.13) 

~ (-1)--L 

NC 
c Cp kc cos(Zrr@~) f NJ cos(2ri&.)] 

+.A +1 :-. : 

where the explicit factor of l/NC compensates for the N, in the definition of Grr,l, and where we 

have discarded all terms exponentially suppressed in Imr. 

This can be simplified further through the same consideration (of that part of the sum over all 

boundary conditions which corresponds to s umming over multiples of the boundary condition basis 

vector W1) that was used to eliminate alternative (b). In addit’ mn to terms with a dependence on 

PO, the partition function also includes terms with a dependence on &, so in this case, the sum 

over triplets (W + 0. WI, W + 1. WI, W + 2. We) eliminates all terms lacking an interference except 

those of the form exp [zk27r-i (PO - &I)]. Th ese terms are however eliminated by the sum over other 

boundary conditions, as discussed in appendix II. This then leaves us with 

-e& CC;0 (2&T, + N;(e~-'(@G-P~~) + e-~-'(‘k-&d)) 
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as potential contributions. It turns out that the interference terms between the G and G’ gauge 

groups eizli(@c-@b) are removed by the sum over the other boundary conditions, whose discussion 

we defer to appendix II. Thus, the only remaining terms are from the NC gauge oscillators, as one 

might have expected, since those are the oscillators corresponding to the gauge charges carried by 

the external legs. This will leave a factor of 

(-1)“~’ 2 , (8.15) 

for the left-mover contribution (after performing the remainin g sums over world-sheet boundary 

conditions) in this two-Green function case. 

Terma with more than two left-mover Green functions arranged in a cycle of the form in equa- 

tion (8.11) can be analyzed in a similar fashion. In the large Imr limit the surviving contribution 

for such a term (for the ordering til 5 3, < . . . 5 ti,,) is 

+ ~C~ZL(-i)“-‘GF[;;] 

c (8) 
(~~,~)G,[~~](-u~~)G~[~~](-~~~)...Gr[~~](-u,-l,,) 

--a (-l)“--1; c CCFZL [pe-l*iRcr 
(1-t 

,en WOOL 
1Il.*iRer + c cm 2341 

i=, 

x (+i) (-2 ~i~~~,,,,~-+~,.,~hr _ ~~,~e~iR.~e-*iR9~“~e~l”,~l~mTe-~*iPo 
> 

x (-i) (e xiRaul,,-rlhlIIms _Ql/le~‘R~~e-*‘Re~~e~~il~IimselriPc 
> 

x (-i) (e riRe~ne-~~ir,,~Imr _ ~1/1,*;R=r,-*iRcv,l,nlhtIimr,Z*ipc 
> 

x (4) (e *iRe”,,,-,e -r/o”,,-,,lmr _~l,~eliR.‘e-“‘ReY”.“-,e~,~“,..-IIim~,l*ia,~ 
I 

NC (@@C + e-‘*irk) + N; (e2*‘&* + ,:-lri!+) 

)] 

(8.16) 

where any variables and Green functions removed dur&g the pinch integrations are understood to 

be omitted, and where we have again discarded all terms exponentially suppressed in Im7 on the 

last line. Following the same reasoning concerning the cancellation of the phase factors of ezriac 

employed above for the two-Green function case, we find a factor of 

C-1) 
*inl i”~ (8.17) 
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We remind the reader that n is the total number of external legs for the process at hand, while nc is 

the number of legs attached to the loop after performing the pinch integrals. (Each pinch reduces 

the number of legs by one.) The factor of 2 difference between this case and the earlier case of 

two left-mover Green functions is due to the fact that in the former case either Green function can 

supply an 0(41/a) term, while in the latter case only GF[ ;z ](I%,“) can supply the o($l’) term. 

However, this factor is (eventually) compensated by the fact that there is another ordering of the 17s 

which gives a contribution for this cycle of Green functions, that with C,,-I 5 k-1 < . . <_ til 5 I?,.,. 

This reversed integration ordering gives a contribution with a factor of 

(-1)” in’ (t3.18) 

for the left-movers. All other integration orderings give no contributions for this cycle of Green 

functions. 

Ia case (d), which arises in the computation of A,;j (3 < j < [n/Z] f 1; the computation 

of A,,;1 is essentially the same, except that the fist cycle of Green functions is replaced by a 

self-contraction Green function), we start with two indivisible cycles of Green functions, 

eachcontributingapower of$jz in theinlinite-tensionlimit. (The sign (-1)” = (-i)(“-j+‘)-l(-l)(j-‘)-l 

again comes from replacing (I?~[ ;,“]‘s with GF[ g,“]‘s.) Through out the following discussion, we will 

assume again that variables and Green functions that have been removed by the pinch integrations 

are omitted. 

Following the same reasoning used in the discussion of case (c) above, we can see that there 

are four classes of integration orderings without an exponential suppression of the form (&lo), 

Y, 5 62 5 5 cj-1 ) cj 5 L?j+a.. 5 tin = 1 (8.20~) 

fij-, 5 tiji-, 5 . < 61 , fin-1 5 en.-1 ... < “j <_ Iin = 1 (8.206) 

tij-1 <Cj-S<...<Cl, cj 5 vj+a.. .< Y -?I -1 < v, = 1 (8.20c) 

fir < fi* 5 ... < cj-, , tij 5 fij+j 5 cm,-* 5 i& = 1 (8.20d) 

In addition to contributing a power of @*I’, each cycle also contributes a factor of exp [+2x&]. 

In order to obtain a non-vanishing result after the sum over string world-sheet boundary conditions 

one cycle must contribute a factor of e’*“@c, while the other contributes its inverse, a factor of 

c’~‘@c. This imposes a restriction on the relative ordering of the variables in the two cyclic 
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sets: if they are ordered in the same direction, as in equations (8.20~~) and (8.20b), we would 

obtain a vanishing result in the field theory limit because then the phases would add to give 

e*r*i~O. This would then vanish after summin g over the triplet of world-sheet boundary conditions 

generated by WI. For example, in the field theory limit with ordering (8.20-a) the Green functions 

in equation (8.19) expand to 

[ ( 
(+i) 

eniRe”j-,.le -*,c,-,.~,Imr _~l,~,*iR.le-*‘R’“j_l.,,*~~ i--L. IIImI,-2~iPc 
> 

(-i) (e *,Rel+,e-*,~l,Ims _ ~l,l,*iRIre-riRIyren,~,/Imre~riao 
> 

x (-i) (e~‘R.“i-I.j--l,-*lc~-r.i-rIims iq -l,‘e*iR~le-*‘R~“,-l,i-le*,~,-,.i-r,Imrelli~o )I x [(+i) (,riR~v”i~-~l~“iI’mr _ * -l,~e*iRer,-=iRI”“j,=,~.j,Im’e-l*ia, > (8.21) 

x (-i) (e 7riRevi+,,, ,-T~C~+,,~ /Imr _ ~ljl,*iR~r,-riR.vj+~.~~*l~j+~.~iIms,lliP~ 

> 

x(-i) (e"ReY"."-I,-*l~"n."-,Iimr _ ~'/le"'Rer~-"'RI""."~*~*/~~."~'l'mlel*iP~)] 

- P 
^ l*iRer(-l)n+nlinr [e-l*'Bo] [e-r.ia.] 

-0 

where we have obtained a vanishing result because the phase e fri@~ did not cancel. The result is 

the same for the ordering (8.20b). Only in those cases where the two cycles of Green functions 

have the opposite ordering, as in equations (8.20~) and (8.20d), do the phases cancel. For these 

orderings, the left-movers simplify in the field theory limit, to 

(-l)n+W-jz+ljW (8.22) 

(for the ordering (8.20~)) where j, - 1 of the fist j - 1 variables remain after the pinch integrations 

and 

C-1) 
n+jt-lj7U (8.23) 

(for the ordering (8.20d)). 

We can now s ummarise the factors produced by the left-mover Green function in the field 

theory limit, 

Two Green functions: 

(-l)“-’ 
N, c WF[ ~~](“,i’)G~[~~](~i,i,) ----t (-I)“-’ 2 (8.24~) 
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Three or more Green functions in a single cycle: 

(-1) n+nr pt ) i+, 2 ti, < ... 5 c+, 

(-l)V, , fi;, > ti{, 2 . . . > fiii.,-, (nc 2 3) (8.246) 

0 otherwise 

Four Green functions in two cycles: 

Five or more Green functions in two cycles: 

CC~L(-~)“GF[~~D](Y~~~~)GF!~~](V~.~,)...GF[~~](~~~~_~~~) 
x GF[Oj~](Yiilijl+,)G~[~~](Y;il+liil+')...G~[;;~]("i.~~j~) 

( I%, < I%* 5 ... 5 tTij, "++, 2 ciij+l 2 . . . 2 time, (8-W 

, ";, 1 tii, 2 . . . 1 i$, cij+, 5 "ii+2 < . . . < ti,-, 

otherwise 

where 3;, = 1 has been fixed. The schematic notation C C indicates that these simplification rules 

include all effects from summin g over the world sheet boundary conditions. If there are more than 

two cycles of left-mover Green functions there will be no field theory contribution. In the case that 

nl = 2, there is only one integration ordering (since one of the legs is at a fixed location), whereas 

for nc 1 3 we see that the left-mover factors contributed by a given integration ordering and the 

reversed integration ordering always differ by a factor of (-l)“t . 

8.4 Expansion of the Right-Movers 

We turn next to the consideration of the large I~T limit of the right-mover contributions. 

The analysis of the right-movers in similar to that performed above for the left-movers. There 

are several differences, most importantly the change in the vacuum energy of the right-mover 

superstring, which is at ml = -l/2 (in units of &v/X). The leading term (before GSO projection) 

is therefore @-1/1. Thus, in the field theory limit we can obtain at most a single additional power 

of @‘/’ from either the Green functions or from the partition function. 

After performing the 8;~ and Bi4 integrations in equation (5.10), and integrating by parts to 

remove all double-derivatives of the bosonic Green functions tiB, a general term in the right-mover 
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factor is a product of bosonic Green functions and cycles of fermicmic Green functions. There are 

two types of terms that survive in the field theory limit, those with (a) no fermionic Green functions 

or (b) a single cycle of fernionic Green functions. Terms with more than a single cycle of fermi&c 

Green functions will not contribute because, just as in the left-mover case, each cycle of fermionic 

Green functions contributes at least a factor of $I’, and here more than one power would yield an 

over-all positive power. 

Let us consider first the surviving contributions for the FDH scheme, where no modifications 

to the string amplitude of equation (5.7) are necessary; we will consider the modifications (7.4) 

necessary for the HV (and CDR) schemes later. We begin with case (a), where only bosonic 

Green functions are present. Since the next-to-leading order term in the bosonic Green functions 

is of O(f), the infinite-tension limit will leave only the leading contributions; the next-to-leading 

term will result in an overall positive power of $/‘. For the bosonic Green functions, there is 

no exponential suppression of the form (8.10) in the leading terms (unlike the fern&x& Green 

functions) so the product of all the leading order terms from the bosonic Green functions survives 

in the field theory limit. Since the bosonic Green functions cannot supply the required factor of 

$/‘, this factor must come from the right-mover partition function. Thus a factor of this type in 

the amplitude becomes 

pp,f&ni,,j,) - -ppWR~~ 1- 2~%-*‘R~~cos2*& 

3 I=1 ( 

-2$,le-“‘R”I ~Cos2978Ri) (~)m~(-Sign(Qi,j,)+2G.,j,) 

(8.25) 

in the field theory limit. In the Neveu-Schwarz sector, which contains the g!,uons, the KLT coeffi- 

cients C$ are 

“2 = - cos(27r&)/M 

= ~(~1)“O+n,+nr+nr,48 

where the first form is true for the W, sector in any model, while the second form is for the specific 

model detailed in appendix I. The ni are the coefficient of the basis vector W; in the given boundary 

condition vector p’ = C niWi. We may note the basis vector I%‘,, which was used to simpliry the 

left-mover structure, does not enter into the considerations of the right-movers. We can also rewrite 
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the various cos 2xp~i in terms of these ni; we obtain 

c? eos2apt = -1 c? COS27r/3R0 = -(-l)(“*+“‘) 

c$ cos2+3a = -(-1)(“3f”4) “2 COS2X&, = -(-l)(“S) 

“7 cos2?&+3 = -(-l)(n,) c? cos2a& = -(-l)(n,) 

c? cos2apR, = -(-l)@,) c? cos27rp~ = -(-l)(n,) 

c;;‘” cos2ap~ = -(-l)(n*) c? COS27+J~~~ = -(-l)(“*+na) 

(8.27) 

Because each coefficient ni in the boundary condition vector is summed over the values 0 and 1, 

only those terms independent of all the ni can survive; here, only the terms involving the ‘spin’ 

component survive, leaving 

& 12 d(2ap7) = 2 (8.28) 

6 

for the coefficient of the @1/1 termin the partition function. While the precise form of the coeflicients 

is model-dependent, this result is not; any model with only gluons transforming under the gauge 

group will yield the same result. 

Combining this with the large-ImT behavior of the bosonic Green function given in equa- 

tion (8.7), the contribution of the right-mover Green functions in this case is simply 

2 (-;)“’ E (signfp,) _ Cifj#) (8.29) 

Next, consider case (b), where the term does contain fermionic Green functions. The product 

of the leading contributions (in 4) from the fermionic Green functions is exponentially suppreaaed, 

just as for the left-mover Green functions. In order to get a non-vanishing result the exponenti& 

of the form (8.10) must again cancel completely between the next-to-leading order term in one 

fermionic Green function and the leading terma in the re making Green functions. Unlike the case 

of the left-movers, however, the expansion of the right-mover partition function begins with 4-l” 

rather than i-l, so we can have at most one cycle of fermionic Green functions; since each cycle 

contributes a factor of $I’, terms with more than one cycle will end up with a positive integer 

power of ill’, and so will disappear in the infinite-tension limit. 

If we choose the ordering 31 < til < . . . <_ I& (such as arises in the calculation of A,;I), the 

only cyclic sets of Green functions that will not vanish in the field theory limit are those of the 

form 

where j < m and k, k’, k” > 0. That is, only cycles built upon a subset of the variables ordered in 

the base set in the same way as in the ordering dete rmining the integration region, can survive. 
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In the infinite-tension limit, such cycles simplify as follows (nf denotes the number of fermionic 

Green functions), 

- ccpq (,--kie -n,L&.j,hnr _ ~l,le-“‘ReieliRe”,je”i~~‘lImr 
4~Pd) 

b 

x (4) (,--cv “%%.--l” e-*/%“,,4,,Ims 

-ql/le-*‘Rele*iRe”,,, -,,, e*,c.“,., -,,,(I mT wdt)) 

- $ ~42v3T) x 
(“f = 2) 

a (nt > 2) 

-{ 

-2 3 ("f = 2) 

(-i)“’ , (nf > 2) 
(8.31) 

where we have dropped all exponentially suppressed terms. Any bosonic Green functions multiply- 

ing a cycle of fermionic Green functions should be expanded according to equation (8.7), yielding 

a factor 

(8.32) 

with nc replaced by n( - nf. 

A cycle of Green functions built upon a set ordered differently than the integration ordering, 

for example, 

GF[ i:](Fj,mlGF[ ;I:](pj.j+k)GF[ i:](Ej+k-k*,j+k) . ..GF[ ~~](Fm-w,m) 1 (8.33) 

with the same ordering of the 6 used above, will vanish in the field-theory limit. Conversely, the 

cycle of equation (8.30) will yield a non-vanishing factor only for those integration orderings where 

either the order of the variables in the base set of the cycle {Pi, Vj+k$ Pj+i+L’, . . , i&-kf~ ,Y,} is con- 

sistent with the integration ordering, or where the reversed ordering {T,,,-,,, Y -k”r.. ,Yj+k+k’,Fj+k,Tj} 

is consistent with the integration ordering. For every integration ordering with which the base set 
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is consistent, the cycle of right-mover fermionic Green functions (8.30) will contribute an identical 

factor, the one given in equation (8.31). For the reversed integration ordering (i.e. those integration 

orderings with which the reversed ordering of the base set is consistent), the contributed factor will 

be 
-2 1 

1 , 

(9 = 2) 

in, CT > 2) 
(8.34) 

That is, the contributions of a cycle of fermionic Green functions in a given integration ordering 

and in the reversed ordering differ by a factor of (- 1)“f 

So much for the expansions in the FDH regularization scheme. What are the modifxations 

necessary to obtain the expansion for the HV regularization scheme? If we introduce scalars in the 

Neveu-Schwarz sector, for example by replacing W, from the set of basis vectors for the model we 

are using with W; as given in equation (7.5), we will alter only terms which depend on n4, the 

coefficient of W, in the boundary condition vector 6. In the modified model, only terms which 

depend on pm, pm, pm, and PRL) will end up with a dependence on nr . In particular, the fermionic 

Green functions depend only on &, and are thus the infinite-tension limits of terms containing any 

fern&kc Green functions are left unaltered by the addition of scalars. The only term+ which are 

affected are those which contain only bosonic Green functions, case (a) above. 

For these terms, again only terms independent of the re mainhg ni can survive; these now 

include not only the cos 27r& term in the partition function, but also the cos Z?rpm term. Equa- 

tion (6.28) is thus replaced by 

4 (8.35) 

as the coefficient of $jl. As promised in section 7, the addition of scalars effectively modifies only 

the partition function in the field-theory limit. 

The node1 mod&d by replacing the !I’, xctor r;ith 15’; zxtzins one complex, or two real 

adjoint scalars in the Neveu-Schwarz sector; thus, the prescription for obtaining the HV scheme 

amplitude (and the ordinary helicity contributions in the CDR scheme), 

ZHY(pure glue) = ZFDH(pure glue)-+ (ZFDH(pure glue + N, real scalars) - ZFDH(pure glue)) , 
, 

(8.36) 

is simply to replace the coefficient of the Q1/’ in the partition function (8.28) with 

2-6 (8.37) 

(thus this coefficient simply counts the number of independent helicity states circulating in the 

loop) so that equation (8.29) becomes 

2 (1 - bRg) (-q-t fi ( siepjl) - G~,~,) (8.38) 
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where 6~ = 0 for the FDH scheme, and 6~ = 1 for the HV and CDR schemes. 

A simple check on that the modilication of the partition function includes the effect of adjoint 

scalars correctly comes from the computation of the gauge theory p-function. Using this string- 

based technology, we computed the p-function in previous work [47], obtaining the standard result, 

P +$(;-4). (8.39) 

In this equation, the l/3 arises from terms which contain only bosonic Green functions (after all 

pinch integrals have been performed), while the second term, -4, arises from terms which contain 

fermionic Green functions. Following the above discussion, to include the effect of adjoint scalars we 

should simply multiply the contributions from the pure-bosonic Green function terms by (1 t N,/2). 

For the /Munction of a theory with N. real adjoint scalars, we would obtain 

P -(3 1 
s'N< 1 f X/2 _ 4 

YM+ss*1.*. = 16T1 (8.40) 

in agreement with the usual field theory result [48]. 

8.6 Expansion of the Exponentiated Green Functiona 

The third factor in the integrand of the string amplitude are the contributions ccmmmn to the 

left- and right-movers, equation (5.11). The partition function and its expansion have already been 

taken into account in the above discussions of the expansions of the left- and right-movers; this 

leaves us with the zero-mode pieces - the exponentiated bosonic Green functions. 

These produce the standard Feynman- parameter denominator of a loop integrand in the 

infinite-tension limit (after the Inu integration). In the large IIXIT limit, these exponentiated 

Green functions behave as follows, 

eXp(GB(V< - Vj)) 4 CXp(IIIlT(C~j - IGjil)) (8.41) 

The kinematic factor K in equation (8.1) thus becomes 

- $ Ic;' kjCij(l - ltiijl) (8.42) 

and the denominator of the parametric integral is 

[ 

$ hi .kj lcijl(l - lfi<jl) 1 
nl--l+c/l 

(8.43) 

We can put the denominator in a more standard form by changing variables from the ti to a 

set of standard Feynman parameters a+ In general, we may have to sum a given contribution over 
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several orderings of the parameters ti; that survive after the pinch integrations have been performed; 

con+ider the integration ordering fi+) 5 tint11 5 . . . 5 ti-(,,,) = 1 where LT E S,,. The required 

change of variables is just 

h = $% (8.44) 

where the ni Feynman parameters satisfy the constraint 

n, 

p=1 

and are positive. The denom.inator of the parametric integral then becomes 

(8.45) 

(8.46) 

For eachindependent pinch configuration, the string integral thus becomes a standard Feynman 

parameter integral 

~iJhj6(1-~al) P~({ai)) [$k,j).k40 (m$+lam) (iIlamtm~~]~““‘-“’ 
(8.47) 

where PL is a polynomial given by the earlier reduction of left- and right-mover Green functions. 

Note that no Passarino-Veltman reduction of vector integrals is required; as promised, the string 

has taken care of that. 

8.6 Integration Orderings 

Over what orderings of the I? variables must we integrate ? As can be seen from eq. (8.24), in 

COmpUtingA,;j(l,Z,..., n), only a limited set of orderings contributes. To express these sets in a 

compact form, it is convenient to introduce the notion of the set of mergings M({ai}; {bj}) of two 

sets {a;} and {bj}, which is simply the set of alI permutations of the set {a;, bj} set of mergings is 

simply which preserve the order within each of the constituent subsets separately. For OUT purposes, 

we want a notation for the set of all mergings of the two subsets (ai}&j-l and {a;}:;; of a single 

set {ai}rz:: 

K;j ({ai)Ll) = M ({ai}t=j-li iail?=;;l) (8.48) 
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(Recall that we have fixed fi,, = 1, so it is always ordered after the remaining parameters; this is 

the reason for the seeming discrepancy between n and n - 1 in this notation. Note also that the 

lint j - 1 labels appear in mxrse order.) 

For the contribution without pinches, the analysis of the left-mover contributions would tell us 

that in calculating A+( 1,2,. , n) we must integrate over the orderings M,;j({C~}~EI) and the re- 

versedorderings M,,,,-j+l ({C<}i=,-l, C,), which we shallabbreviate by the notationM,,j(l, 2,. . . , n) 

and M,,;,-j+l(n - 1, n - 2,. , 1, n) respectively. If we have eliminated some variables through 

pinching, leaving nc of which j, - 1 are amongst the first j - 1, we must integrate over the or- 

derings Wt,;jl(l,...,n) ad JJnt;n~-jl+l (n, , 1, n), where the variables removed by the pinch 

integrations are understood to be omitted from the argument lists. 

This is not quite the whole story, because the contribution from a given ordering and its 

reversed ordering are related in a simple manner. This is easiest to see after changing to Feymmm 

parameters. First, we may note that the left-mover and right-mover fermionic Green functions 

factors change by at most a sign, while the expansion of the bosonic Green functions in the ordering 

VI 5 Cl 5 ‘.. 5 i&-l 5 C, = 1 is (j < I) 

GB(Vjl) --t IEOT (i’fj - fiij 1 

GB(Fjl) ---) ~ (1 + 2~jjI) 

Using the same change of variables (8.44) employed above, these become 

Ge(vj~)+hr (m$+lam) (lem$+lam) 

I 

i H 

j n 

=Imr 
1 

m=j+l 

&(yj,)+; (l~~~am~am+m~lam~ 

For the reversed ordering, Lt 5 &.,-l 5 . . . 5 13~ 5 17, = 1 we have 

GB(vjl) + IIIIT (tfj + tiij) 

Ge(Fjl) -t ; (-1 + 2Cj,) 

(8.49) 

(8.50) 

(8.51) 

Here, we employ a slightly differently mapping to Feynman parameters, which corresponds to a 

relabelling of the variables introduced in equation (8.44), 

fij = -g a, 
m=j+l 
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With this mapping, the latter expansions are simply 

GB(Vjl)-+ImT (-_gp) (-.$+,-i-') 

kB(Yjl)+i (el+2m$+l%n) 

(8.53) 

The expression for GB is equal to that for the original ordering, equation (8.50), while the expression 

has changed by a sign. The measure in both cases is identical, so that we may conclude that the 

contribution of a given ordering and the reversed ordering can differ by at most a sign. 

Let us consider this possible sign more carefully. After all pinch integrations have been per- 

formed, each right-mover term contains n, fermionic and n( - n, bosonic Green functions. We saw 

earlier that the contribution of the fermionic Green functions changes sign when we reverse the 

ordering of the integration variables; since the factor contributed by each bosonic Green function 

also changes sign, the net change in each right-mover term is simply (-1)“‘. As we saw in the 

discussion of the left-mover expansions, the factors contributed by the left-movers also change by 

the same sign between a given integration ordering and the reversed one. We thus conclude that 

the contribution to any partial amplitude of a given integration ordering and of the reversed inte- 

gration ordering are identical. We may thus pick one of each pair, and multiply that contribution 

by 2. The integration orderings we must sum over are then reduced to those contained in the set 

Mm,;j, (1,. . . , n). This can be given a diagrammatic interpretation, namely that the contributions 

of the two diagrams 4a and 4b are identical. For all diagrams with three or more legs attached to 

the loop, there are two orderings giving identical contributions. 

8.7 Collecting the Pieces 

In the field-theory limit, the string integral simplifies considerably, and the various Green 

functions, which in the full string theory consist of products of theta functions, simplify to numbers 

or polynomials in the Feynman parameters. The above expansions allow one to write down a simple 

set of rules for calculating each partial amplitude. Each partial amplitude wilI receive contributions 

from various pinch diagrams with certain orderings of the integration variables. These contributions 

have the schematic form 

1 

I 
d(Feymmn parameters) 

Polynomial(Feynman parameters) 
Pinch factors Feymnan denominator 

(8.54) 

wherein the ‘Pinch factors’ are simply products of certain external momentum invariants k; . ki 

times constants, and the Feynman denominator is the standard one encountered in a @ scalar field 

theory in 4 - c dimensions. 
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In the pinch factors, we must keep track of the signs; for a generic neighboring pair of indices j 

and I, a pinched left-mover Green function will appear in the form GF[ ;,” ](-Pjl); the right-mover 

Green functions will appear in the form G~[z:](-j ) v 1 or C?:B(iijl), leading respectively to pinch 

factors of 1/2kj. kl and -l/Zkj . kl after performing the pinch integrals. If the indices are the 

first and last indices within a trace, however, the left-mover Green function will appear in the form 

GF[;zl( j) g’ ’ g Y I , wm rise to an additional sign. 

As noted in the previous subsection, we can pick one out of each pair of equivalent integration 

orderings, in which case we get an over-all factor of 2, and we can ignore the left-mover structure, 

ezcept in the case that we have four legs attached to the loop after the pinch integrations, corre- 

spending to two independent traces (i.e. A,,j>a), in which case we get an additional factor of 2. 

The factors of in‘ emerging from the left-movers combine with the factors of (-i)“, emerging t?om 

the right-movers and disappear. Only a factor of (-l)“+jt-l is left over. 

Amongst the right-movers, contributing cycles of fermionic Green functions will then yield a 

factor of 2 if they contain only two Green functions, 1 otherwise; terms with no fermionic Green 

functions should be multiplied by 2(1- 6~~/2), and every bosonic Green function &B(~jl) should 

be replaced by sign(Cjl)/2 - tjl. 

It is possible to decouple these expansions from their string theory origins, as we discuss in 

the next section. 

9. Rules for the Field Theory Calculation 

The simplifications derived in the preceding section enable us to write down a set of rules to 

be used in performing calculations with the new technology. This set of rules does not require any 

knowledge of string theory for its application. 

In the calculation of the n-gluon amplitude, one begins by picking a set of reference momenta for 

the external gluons, along the lines suggested in section 3, and substituting the resulting expressions 

for the various dot products of external momenta and polarization vectors (&; . ~j and ei. cj) into 

the following expression, 

~(h,ki,Ei)) = 1 &A de, ) 

c=xp [ - ejelkj ’ kl GF(Zj() + i(6jelkj EI + B,Blkl Ej) GF(z~~) 

- i(t?jejkl ~j - 0,6lkj . ~1) c?:,(z~,) + fTj&~i ~j G~(zjl) 
(9.1) 

+ BjijO{8lCj . El EB(Zjl) 1 
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which we shall call the kinematic tensor. In this expression, the G,VS and d~s, to which we shall 

refer as the ‘F’ and ‘B’ Feynman parameter functions, may be treated as ‘black boxes’; the rules will 

eventually turn products of these objects into a polynomial in the (ordinary) Feynman parameters. 

The other parameter function appearing in this expression, c~, is the derivative of B-parameter 

function with respect to its argument. The F- and E-parameter functions are antisymmetric 

functions of their arguments, which are differences of variables labelled by the indices of external 

gluons: zjl = zj - zt. (These z variables are in fact sums of Feynman parameters, but the rules take 

this into account implicitly, and we shall not have to make use of this fact explicitly.) The 8, and Bj 

are Grassmann parameters; after substituting the spinor-helicity basis values for the dot products, 

one must integrate with respect to these parameters. (We remind the reader that integration with 

respect to such Grassmann parameters is equivalent, up to a sign, to expansion of the exponential 

in equation (%I), followed by extraction of the linear term in each parameter.) 

Next, one must remove all derivatives of the B-parameter function, by integrating by parts 

the following (formal) integral aver the z-variables, 

E({zt, klj) x ((21.7 kl)) 

as appropriate. (There are no boundary terms.) In this expression, 

P-2) 

(9.3) 

where GB is the antiderivative of the B-parameter function. It is possible to write down a systematic 

algorithm for this procedure, but one isn’t really needed for calculaiiutir done AUUAMU:Y. For certaia 

helicity amplitudes, for example (- f.. .+ ), with an appropriate choice of reference momenta, the 

derivatives of the B-parameter function disappear on the first line, without any need to perform 

this step of integration by parts. After performing the integrations by parts, one should remove the 

integrals and the & function, and retain only the transformed form of the kinematic tensor. The 

latter now is a sum of terms, where each term is a product of spinor products, Lorenta products, 

and a combined total of ~1 F- and B-parameter functions. (The number of each type of parameter 

function in a given term will vary from term to term.) One may perform the following check on 

the integration by parts procedure: the resulting kinematic tensor should vanish identically under 

the substitution &B(Z) + -Gp(z). 

Knowledge of the functional form of the Feynman parameter functions is in fact not required 

after this step; only the dependence on the lab& of the external gluons is important for subsequent 
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steps. It is therefore convenient to replace the notation used above with a notation tracking only 

the external labels, 

3 GF(zjl) -t GF 

GB(Zjl) + tig, j<l 

' lj 
GB(ljt) -t -G,, j>l 

(9.4 

After this replacement, the lirst index of the Feynman parameter functions will always be smaller 

than the second one. The steps described below may occasionally generate a Feynman parameter 

function G! (denoting collectively the G$’ and 6>“), where the fist index is greater than the 

second one; in such a case, one should replace it with -G$. 

At this point, one should write down ail planar @ diagrams with n external legs, excluding 

diagrams with tadpoles, subject to the requirement that the legs be numbered in a cyclicly con- 

secutive fashion around the loop. (Cyclicly consecutive is determined by the trace structure Gr,,j; 

for the trace structure Gr,+ , cyclicly consecutive means consecutive mod n.) These diagrams will 

be used as a guide in the evaluation of the amplitude. Each diagram consists of some number of 

trees attached to the loop. We will denote the number of legs attached directly to the loop by ni. 

Diagrams with only two legs attached to the loop where one of the two legs is an external one give 

a vanishing contribution in dimensional regularization, and should be omitted from the following 

discussions. It is helpful to label the internal vertices of the trees according to the following rule, 

working from the outside inwards: each vertex should be labelled with the larger index of the two 

lines feeding into it from an outermore vertex. In addition, it is convenient to think of each external 

momentum as flowing into the line labelled by the given index. Momentum conservation is enforced 

at each vertex, so the momentum attached to a given line is the same as for the corresponding field 

theory diagram. It is not necessary to track the momentum beyond the trees, and one should not 

introduce a momentum variable for the loop. Each line in a tree attached to the loop branches 

as we go outwards from the loop; we will refer to the set external legs reached via this branching 

as the leaves of a given line. Because of the cyclicly consecutive labelling of the external legs, the 

leaves of any tree line in the diagram are consecutively numbered either modj - 1 or modn- j + 1. 

What one calculates directly in the new technology is not the amplitude, but its irreducible 

gauge-invariant pieces, the partial amplitudes; the full amplitude then appears as a sum over 

partial amplitudes with appropriate color traces, as in equation (4.2). Each partial amplitude will 

eventually be written as a sun over these diagrams of a standard integral over Feynman parameters 

of a certain polynomial in the Feynman parameters divided by a standard Feynman denominator 

55 



for a loop with n( legs, 

A N c Id (*ZmYr,) pol~;~pf=J . 

di.gr*ms dcnomin.ior 
(9.5) 

The rules we shall describe below transform the kinematic tensor into the polynomial in the Feyn- 

man parameters times additional poles in the external momentum invariants. The diagrama guide 

this transformation; in general, of course, the resulting polynomials (including the number of Feyn 

mzm parameters!) are d&rent for different diagrams. 

The first step in the transformation is to account for the contribution of the trees attached to 

the loops. For any given diagram, each propagator in the tree (including the propagator attaching 

the tree to the loop) contributes a factor of 

where K is the momentum flowing through that line. The momentum flowing through a given line 

is of ccnme just the sum of the momenta of its leaves. These factors should be carried along with 

the kinematic factor as one analyzes it follows the steps described below. 

The contribution of any term to a given diagram is determined by the indices of the Feynman 

parameters functions in that term. In general, each tree with I leaves attached to the loop will 

remove I - 1 Feynman parameter functions from the term, replacing them with either 1, 0, or -1. 

One may then proceed to analyze the other trees. Here, we give only the rule for analyzing single 

three-point vertices attached to the loop. Similar rules can be formulated for more complex trees 

attached to the loop, but as we have deferred the derivation of such rules, so we shall defer the 

statement of them Li the piutic&z case u: ibe fu-a-point amplitude, the rules for three-point 

vertices alone n&ice, because the only diagram with a more complex tree attached to the loop (one 

containing two three-point vertices and three external legs) h as only two legs attached to the loop, 

and one must necessarily be an external one; it therefore vanishes, as stated above. 

The contributions of the trees depend on the particular partial amplitude we are calculating, 

and so it is convenient to introduce a bit of nomenclature to refer to the arguments of the various 

partial amplitudes. Recall that we must calculate Ln/Z] + 1 partial amplitudes in general (though 

one may rely on the U(1) decoupling equations to reduce this number by two). Each partial 

amplitude A,,j is associated with a color structure with two traces, the first containing j - 1 color 

matrices corresponding to the fust j - 1 arguments, the second containing the remainder. (If j = 1, 

the first trace is then trivial; it is replaced in the associated color factor with the number of colors, 

and all the arguments are associated with the second and only non-trivial trace.) By extension, we 
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will refer to the lint j - 1 indices or arguments of Aqj(l, . . . , n) as ‘belonging’ to the first trace, 

andthesetofimlices {l,..., j - 1) as ‘constituting’ the fist trace, and so on. 

With this nomenclature, we can phrase the rules for the attached simple trees as follows. For 

each such simple tree, consisting of a three-point vertex with external legs a and b attached to the 

loop(notethatb= (a+l)modnforA,,l,andeitherb= (a+l)modj-lorb= (a+l)modn-j+l 

for the other A,;j), examine the Feynman parameter functions in a given term. The term will 

contribute only if there is either a lone G>* or a lone 62” amongst the parameter functions. If 

neither is present, or more than one of each is present, or both are present, the term does not 

contribute, and one should throw it away. Furthermore, the term will only contribute to the given 

partial amplitude An;j if both indices belong to the same trace, but do not constitute the entire 

trace. (The requirement that the indices not constitute the entire trace eliminates contributions to 

A,,;3 with legs 1 and 2 attached to a tree, and also my contributions with attached trees to A1;3.) 

Otherwise, the G>* should be replaced according to the following rule, 

G>” + 1, @b s --1 (8, b) # (1, j - 1) ad (a, b) # (An) 

p.6 &%” (9.7) 
F +-I, B -+I (o,b) = (l,j- 1) or (a,b) = (j,n) 

(The sign change for indices (1, j - 1) and (j,n) is essentially due to the difference of the cyclic 

ordering of the labels of the diagram compared to the indices of the G>‘.) We can summar ize this 

equation as follows, 

,$+ + (-1)6’.“(-1)6::~;‘1+6~,;)) (9.8) 

After this replacement of the Feymnan parameter functions, one replaces all appearances of the in- 

dex min(a, b) in the other Feynman parameter functions with max(a, b), and then proceeds examine 

the indices attached to the other trees. 

At the end of this stage of the computation, one has reduced each term to B product oEspinor 

and Lorentz products (including the poles brought in by the attached trees) times TIN Feynman 

parameter functions, that is one for each leg attached directly to the loop. Of the legs attached to 

the loop, j, - 1 belong to the fist trace, and nt - j, + 1 belong to the second. Note that 1 5 j, 5 j. 

We will call the iirst set of indices 2’1, and the second set Tz; and the diagram depicted in fig. 5with 

the trees amputated we will term the reduced diagram. 

For most of the partial amplitudes A,+, each original diagram represents in fact the sum of 

several terms with different Feynman denominators corresponding to the d&rent orderings of the 

external legs that respect the order within each trace. (The preceding steps in the calculation are 

independent of the ordering, but following steps depend on it.) Each different Feynman denominator 

corresponds to a different labeiling of the reduced diagram. At this point, one should write down all 

inequivalent labellings of the reduced diagram, with the surviving labels, where the cyclic ordering 
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of the labels respects the ordering within the second trace, and where the cyclic ordering of the 

labels belonging to the first trace is the pewwe of the ordering within the trace. Thus each 

reduced diagram will spawn a set of ordered reduced diagrams, each of which should be evaluated 

independently below. For the particular case of A,+, the partial amplitude giving rise to the 

leading-N, behavior of the next-to-leading corrections, there is in fact only one possible labelling 

of the reduced diagram. 

The orderings with which one must decorate a reduced diagram in order to obtain the class of 

diagrams to evaluate can be expressed in terms of the mergings of the indices associated with the 

two traces. (Recall that the set of mergings M({ai}; {bj}) of two sets {ai} and {bj} is simply the 

set of all permutations of the set {a;, bj} which preserve the order within each of the constituent 

subsets separately.) The set of orderings relevant to the calculation of A,;j for the given diagram 

we shall call M,,,j,(Z’,, Tg), where 

O(Ujd-1) < U(Ojn-2) < “’ < U(Ul) < Of%,) 

Mnr;j8 ({ai}:=l) = t7 E Sn and 

~(Uj,) < C(ajS+l) < :. < U(a,,-l) < U(8,,) 1 (9.9) 
Note that the first j’ - 1 labels appear in retwrse order, and that the last label - n’ - always 

appears last. In the special case that j’ = 1 (this is always the case when calculating Anil), this set 

contains only one element, the ordering {l, 2,. . , n}. As another example, the reduced diagrams 

associated with the mergings M({1,2,3}; {4,5}) are depicted in fig. 6. 

For each ordered reduced diagram, one must now examine the F parameter functions in a 

term to determine the contribution. Terms with no F-type parameter function must be multiplied 

by 2 (1 - 6~e/2), where 6R = 1 for either the ‘t Hooft-Veltman or the conventional dimensional 

regulzhatix schemes, .-We 6~ = 0 for the four-dimensional h&city scheme dcxribcd in section 7. . . . 

For the remainin g terms, the products of the F-type parameter functions will again reduce to either 

2, 1, or 0, depending on their indices. It turns out that one can never have a lone GF in a given 

term; there will always be two or more, and furthermore, each external label on one GF will appear 

on exactly one other GF. Pick only one copy of each label appearing on some GF, and call this set 

of indices IF. Order the indices according to the ordering of external labels (the element of M,,,;jd 

we are considering). Then 

IF={ilrilr..., if-l, if1 (9.10) 

where f is the number of F-type parameter functions in the term under consideration. 

The complete product of GF’S can have the form 



(for any a and b in IF) in which case the product is replaced by ‘2’; one of the forms 

Gip G*y, .G’,-““G”“f 
F F (9.12a) 

Gip-lGyi,-l, ~~G;“‘G~-“” (9.126) 

(for the order of elements in IF as given in equation (9.10)) in which case the product is replaced 

by ‘1’; or some other form, in which case the product vanishes, and the term should be thrown 

8W8Y. 

Once the F-type parameter functions have been replaced according to the above rules, one 

should replace each B-type parameter function by 

Ind(b) 
&ad 1 

B +-s+ c am 
m=I.d(.)+l 

(9.13) 

where Ind denotes the index of the external label in the given ordering (if it appears in position 

m in the given ordering, its index is m). The a, appearing in equation (9.13) are conventional 

Fey- parameters. 

The Feynman denominator for the given ordering of the given diagram is identical to what one 

would write down in a @ field theory; in the notation used above, it is 

n,-s+r/s 

D(oEMm,;j,)= -Fh’~(n;).K~(ot) a, + 2 8” 
)I 

(9.14) 
j<l *=I+, 

where L(a) is the sequence of leaves of the leg with that label, and KL(~) is the total momentum 

flowing through the leg labelled a that is attached directly to the loop. 

There is an over-all normalization constant, 

N;, = i@g(-&g)npn+ (9.15) 

as well as additional constant factors C,,,j,, which are unity unless n( = 4 and j, = 3: 

2, n’=4andj’=3 
c”o,j8 = (9.16) 

1, otherwise 

and a sign depending on the number of legs attached to the loop in the reduced diagram, 

(-l)js-1 (9.17) 

With these pieces, the partial amplitude is given by the sum over diagrams, and the sum over 

orderings for each diagram of a conventional Feynman-parameter integral, 

A+ = Nm C diasrsm,mE~2rt 1’ (c, darn) (-l)j’-lcnt,jt ‘(’ - cmam~~~ed”ccd (am’u) 
(9.18) 
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where the subscript ‘reduced’ on K: indicates that it has been transformed according to the Riles 

described above. It includes those factors arising from trees attached to the loop. (In those partial 

amplitudes possessing an ultraviolet pole, that pole is still present in this expression, and must be 

removed in accordance with whatever renormalization prescription is to be used.) 

10. The Finite Helicity Amplitudes 

In this section, we present the results of direct calculation for the partial amplitudes Al;1 ( + + + + ), 

Ad&++++), A,,I(-+f+), and A,,J(-+++). The re are several simplifying aspects of this 

calculation: these amplitudes are infrared- and ultraviolet- finite, as noted earlier; and they do 

not receive contributions from regions with two pinches or from regions with three points pinched 

together. 

For the (- + + + ) partial amplitudes, we choose the following reference momenta: for the first 

gluon, k,; for the re mainder, kl The fist partial amplitude, A,;l( - + + + ), receives contributions 

both from the no-pinch region and from the VI -+ V, pinch region; the third partial amplitude, 

Adt3( - + + + ), receives contributions only from the no-pinch region (from all orderings). Adding 

the various contributions together, we Iind 

(241' (24) 
h(1-,2+,3+,4+) = -48;2 L121(23)(34)j411 

[24]*(t + 8) 
= &12](2 3)(3 4)[4 l] 

A4~s(l-,2t,3t,4t) = ?- (12)[241(4i) 
(10.1) 

Ba’ (2 3) (3 4) (2 4) 

(In these form&e, and elsewhere, s and t are used as abbreviations for (12) and (2 3) respectively; 

one must bear this in mind when evaluating the partial amplitudes for other orderings of the 

arguments.) We will discuss the step-by-step procedure of evaluating these partial amplitudes in 

separate publications [46,49]. 

These satisfy the required decoupling equation, 

A;a(L2,3,4) = c Al,t(o(l),u(2),~(3),~(4)). (10.2) 

~ES./Z4 

since 

c A4;1(o(l),0(2),0(3),~(4)) = c A,;1(1-,~(2)+,~(3)+,~(4)+) 
~ES,/Z, oESJtZ,3,4) i 

= -’ 2x 
[2 411 (2 4) [341Z(34) [231* (23) 

4876 -[12](23)(34)[41] + [13](23)(24)[41] + [12](24)(34)[31] (10.3) 

i (12)[24](41) 
= iP (2 3) (3 4) (2 4) 

= Aa,&-,2+,3+,4+) 
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Those symmetries leaving the pattern of helicities unchanged may also be used as a check on 

the particular calculation. (The symmetries not leaving the pattern of h&cities unchanged are 

used to deduce the values of the partial amplitudes for the new patterns, for example, the value of 

Al,1(1+,2-,3+,4+).) For A~;I, we may consider the reflection, followed by an appropriate cyclic 

permutation; we should find 

A4,1(1-,2+,3+,4+) = A,;I(l-,4+,3+,2+) (10.4) 

and the reader may verify that this indeed the case. For A,;3 we may consider the element of Sdi3 

that exchanges the last two arguments; we should fkd that 

A1;3(1-,2+,3+,4+)= A1;3(1-,2+,4+,3+); (10.5) 

i.e.. that 

(10.6) 

Using the anticommutativity of the spinor product and momentum conservation, one may see that 

the required identity is indeed satisfied. 

The third partial amplitude can be extracted using the decoupling equation, 

4,a(L2,3,4) = - c AI;I(~,~(~),u(~),(T(~)) = -~Al;s(V,34) (10.7) 

~EZ,~2,3,4~ 

which gives 

+(I-,2+,3+,4+) = -i (12)[24](41) 
1677' (23)(34)(24) 

(10.6) 

In the ( f + + + ) case, we choose the same reference momenta as in the (- + + + ); here, the 

separate contributions from different pinch regions are infkued divergent, but when added together 

the infrared divergences cancel as expected, yielding 

A,;,(1+,2+,3+,4+) = i 
d, 

461?rz (12)(23)(34)(41) 

A,,1(1+,2+,3+,4+) = ---!- 
st 

16~' (12)(23)(34)(41) 
(10.9) 

A,;,(1+,2+>3+,4+)= -i- 
st 

a+ (12)(23)(34)(41) 

The last partial amplitude is expected to be completely symmetric under interchange of any two 

arguments; this is indeed true, since 

(12)(23;;34)(41) = (12)(24;1;43)(31) = (13)(32;1;24)(41)' 
(10.10) 
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11. The Remaining H&city Amplitude 

For the purposes of computing the next-to-leading correction to the difkrential cross-section, 

the interesting partial amplitudes are A~;I( - - ++ ) and A*;1 (- + - + ). In FDH or the ‘t Hooft- 

V&man scheme, these are in fact the only partial amplitudes required. (In the conventional 

dimensional regnlarization scheme, additional helicity amplitudes, to be discussed in section 13, 

are required.) 

As discussed earlier, the contribution from the three-points pinch is identically zero, because 

of the cancellation of infrared and ultraviolent divergences. In addition, for appropriate choices of 

reference momenta, every pinch of two variables vanishes (at the level of the string integrand). As 

a result, the only contributions to these partial amplitudes come from the no-pinch region and the 

ultraviolet subtraction term. In any of the dimensional regulators, we choose the m subtraction 

prescription. For the n-point amplitude at one loop, the appropriate quantity to subtract is thus 

(,a - 2)@& r’(l -$“l; + c’2) (4a)‘iz (p2)‘/1d~” (1,. . ., n) 

where Pa = -llN,/(3. 16~~) is the leading coefficient in the gauge theory &function. Thus only 

A,,;, is a&ted by the ultraviolet subtraction, 

A,;I(~, , n) --+ &,1(1, , n) - (n - 2)Po; ^ ’ r2(1 -;(;F$ + “2) (4a)“’ A? ‘(1,. . . , n) (11.2) 

where fro = -11/(48x’). 

The normalizations and phase conventions are defined by the expansion (2.2) and the decom- 

positions (4.1) and (4.2) 

.tree * &(1,2,3,4) = “4 (1,2,3,4)-f, ~~-‘~~~(:,2,~,~) +. . 

d:“‘(1,2,3,4) = g’ c Tr(T’-(‘~T”-~‘~T”-~‘)To-~~~)A,(o(l),u(2),a(3),u(4)) 
~ES./Z, 

d~-‘““P(1,2,3,4) = g’($) 

( 

c N,Tr(T”-(L~T”-~~~T”-(J~T”-~~~)AI;1(o(l),a(2),u(3),u(4)) 

WE%/.% 

+ c Tr(T--))Tr(T a~~~~To-“~T’-~~~)A,;,(o(l),u(2),u(3),u(4)) 
UES,/S,,. 

+ c Tr(T”‘(‘)T’+) Tr(Tn-(1~T”-(‘~)A,;,(u(1),o(2),a(3),~(4)) 
oES,/-%,, J 

(11.3) 

where the matrices T” are normalized so that Tr(T’Tb) = Pb. All amplitudes are given in D = 4-e 

dimensions. 
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The tree-level ordinary helicity partial amplitudes are 

A,(1+,2+,3+,4+) = A,(l-,2+,3+,4+) = 0 
4 

A&->2-,3+,4+) = “(12)(2(:j;)34j(41) (11.4) 

l 

4(1-,2+,3-,4+) =i(12)(2$;)34)(41) 

Other helicities are related either by complex conjugation, or by cyclic permutation of the argo- 

merits. 

The next-to-leading differential cross-section is given by [ll] 

2ga(p2) ($)‘N:(N: - 1) c Ay ‘(u) Disp AI;I(u) (11.5) 

UESIIZ, 

for each helicity independently. The absorptive parts are irrelevant because A,;, is proportional to 

A:‘C’. 

As mentioned above, the only contribution to this helicity amplitude comes from the no-pinch 

diagram, fig. 7; following the rules in section 9 and performing a bit of algebra to simplify the 

polynomial in the Feynman parameters, one obtains 

A,,l(l-,2-,3+,4+) = &(4n/~‘)*/~fi 
8 (12)(~~~~4)(41)~L~dni6(1-~ai) 

x 03 
Sala + 12ala3a, + 8a2a: + a+, + 4a: - 4ala, - a3 - 5a, - 3 

(-aalaJ - taplr)~+“l~ 
(11.6) 

One can integrate this expression using the integral table in appendix V. Integrating equa- 

tion (11.6) and its counterpat for A,;1(1-,2f,3-,4C), one obtains the dispersive parts of the 

one-loop partial amplitndes needed for thee next-to-kding corrccticx (dzoppiag C terms of O(C)), 

1 42 

Disp Alil(l-, 2-, 3+, 4+) = i (1 2) (Ji)2(c4) (4 1) l?(’ ~r~/y2:f(lC~ e’2) (F) 

( 

8 
x -- 

9 
- E + ylQ(p’) + t (IQ(S) + I*(t)) - IQ(S)r,(t) + ylQ(t) + $ - 7 - 

> 
1 41 

Disp A,,l(l-, 2+, 3-, 4+) = i (1 2) (2:):c4) (4 1) “(1 ~$()~~c~ e’2) (3) 

( 

8 
x -- - g + +?(P2) + z (IQ(S) + IQ(t)) - cu2 - 4* 

c= 
2u, (IQ(S) + r,(t))> 

+ $g (lb(s) + I;(t)) - ly; 3at (t L?(s) + Sk?(t)) 

(11.7) 
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where $ is the renormalization scale, Q’ is a completely arbitrary scale introduced in order to 

simplify the comparison to the result of Ellis and Sexton [14], r,(z) = In/z/Q’l, G(z > 0) = 1, 

@z<O)=O,and 

0, FDH scheme, 
6R = 

1, HV scheme, 
(11.8) 

and where evaluation in the physical region is assumed (that is, only one of (12), (13), and (14) 

may be positive). 

Using the following functions, 

G(z) = $logarg(z) 

O(z) = ; logarg(-z) 

which are discussed more thoroughly in appendix V, along with the shorthand notation 

r,(jz)=ln y / I 
O(j I) = 0 [(j l)] 
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we can write the whole of the partial amplitudes in the form 

4 

4x(1-,2-,3+,4+) = ~t12)(2(;j;;4)(41) 
(4=)+ P(l - </2)r(l+ e/2) 

wr(1 - l ) 
x 

( 
~-; - g + t (1,(12) + 1,(23)) - I,, (12) lrr (2 3) + +(2 3) 

+;(1+20(12)0(23))-y-$ 

fir :[0(12)+0(23)]-@(12)1,,(23)-0(23)1,(12)+:0(23) 
1 I> 

(13)’ 
A*;,(1-,2+,3-,4+)=i(12)(23)(34)(41) 

(4T)‘/’ P(1 - E/2)r(1 + ~12) 
.%m(l - E) 

g + z [w 2) t 1,(2 3)l - b3)‘-(12wf [[ (12)+1 (23)]1 
2(13)” ’ ’ 

+ (12;;:3();3’4 [$(12)f ‘;(23)] - 11(13);;13;;2)(23)[(23)1P(12)+(12)~fi(23)] 

- (;;!$)[(12)lp(‘2) t (23)1,(23)] 

+; l- 

i 

(12)(23)[2(13)1-(12)(23)] (1-o1(12)-o,(23)) 

(13)’ 

t 1 
2 (13)‘- (12)(23)]10(12)0(23) 

(13)’ 
. i 

_ (12)(23) 32 JR 
2(13)’ 9 6 

z [0(12) + 0(23)] - 
[Cl 3)’ - (12) (2 3)]’ 

(13)’ 
[0(12) 1,(23) + O(2 3) lu(l 2)] 

(12)(23) [z(13)*-(12)(23)] 
- 

(13s 
[0(12) [,(I 2) + O(23) 1, (2 3)] 

[0(12)(23)+0(23)(12)] [11(13)‘-3(12)(23)] 
- 

6 (1 3)3 

(12)(23) [0(12) (12) t O(23) (23)l - 
2 (13)3 I) 

(11.11) 

(Note that the absorptive parts could have been extracted by replacing the logarithm of each 
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momentum invariant IP(s,+,) + IP(s,,+) + &T@(s,,,~); with the standard field-theory conventions, 

O(S) = 1, and O(t) = O(u) = 0 in the physical region.) 

The absorptive parts are irrelevant in the four-point cross-section (because Ali1 is proportional 

to A4), but may be extracted if desired from the dispersive parts by using the appropriate ic 

prescription on the momentum invariants. The absorptive parts are, of cmrse, importat in checks 

of the optical theorem as we shall discuss in section 15. 
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With the aid of the decoupling equations (4.9), we can write down Ad;3 for these h&cities, 

4 
Aw(l-,2-,3+,4+) = ij12j(2;j~34)(41) 

(47ryryl - E/z)r(l + t/Z) 

8x’Iyl- 6) 

x -4~((‘2)“(‘2)+(13)‘“(13)+(23!“(23)) 

(23) [W2 -W)W] 
(12)” 

(1:,(23) + ‘L(13)) - 21,(12)1,(23) - 2#P(12)1J13) 

-2[(12)‘-(13)(23)]2 
I (23)1 (13)-(23)((12)+2(23)) (I (23)-I (13)) 

(12)3(13) ’ ’ (12)1 Ir M 

(23) +rZ _ 

i 

(23) [2(12)’ - (23)(13)] 
-- 

02) (12)” 
(1- O’(23) - O’(13)) + 20(12)0(23) 

+2w2)v3) (23) +2 b2J2 - (13)(23f 
(13) (12Y(l3) 

o(23)o(13) 1 
+ i* -~~(0(12)(12)+8(13)(13)+@(23)(23)) 

-2# (~(13)1,(12)+0(12)1,(13))-2(~(12)1,(23)+0(23)1,(12)) 

-2 
(23) [2(12)” -(23)(13)] 

(12)” 
(0(23)1,(23)+0(13)[,(13)) 

-2[(12!‘-(13)(23)]2 

(12Y (13) 
(0(13)1,(23)+0(23)1,(13)) 

_ (’ 3, [(‘;1)3J 2 c2 3)l [@(2 3) - @(I 3)] I) 
A1;3(1-,2+,3-,4+) = AJ;~(~-,3-,2+,4+) 

Ad;z(l-,2-,3+,4+) = -;Ad,a(l-,2-,3+,4+) 

Al,z(l-,2+,3-,4+) = A4;3(1-r3-r2+,4+) - ;Ad;a(l-,2+,3-,4+). 

(11.12) 

12. Infrared Structure 

The answers obtained for the (- - + + ) and (- + - + ) partial amplitudes in the previous 

section are quite similar for both the FDH and the ‘t &oft-V&man dimensional regularization 
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(HV) schemes; indeed the pole pieces are identical, and the expressions differ only in the finite 

pieces. It is possible to understand this similarity by ex mining the corresponding tree amplitudes 

with one unobserved glum, and that is our purpose here. 

The infrared singularities appearing in the one-loop amplitude must cancel when eventually 

forming a physical quantity, for example, a next-to-leading differential cross-section for observed 

partons. Such a quantity has three different contributions, each of which is separately in&ared 

divergent: the one-loop corrected differential cross-section for the 2 -+ 2 process; the differential 

cross-section for the 2 + 3 process, with one final-state gluon taken to be soft, collinear with 

another final-state gluon, collinear with an initial-state gluon, or collinear and soft; and the one-loop 

corrected parton distribution function. When combined, the infrared divergences cancel (and one is 

left withexplicit logarithmic dependence on the minimum energy and minimum angle ‘experimental’ 

cuts). It should be noted that in QCD, unlike QED, in general the final-atate infrared singularities 

do not separate cleanly from initial-state radiation singularities. 

The one-loop corrected parton distribution function has only a single pole in c (proportional to 

the Altarelli-Parisi splitting function), and so the pole structure is of course the same for both the 

FDH and HV regularizations. Now, the leading (l/c*) singularity is universal, and thus scheme- 

independent; but why is the subleading pole the same? 

The identity may be understood by ex amining the helidty amplitudes for the 2 --t 3 process. 

The incoming gluons, and two of the three f&d-state gluons, are observed and are thus kept in 

four dimensions in either scheme. The lone unobserved gluon must be treated in 4 - E dimensions; 

for the FDH scheme, there are still only two helicities to worry about, but for the HV scheme, 

there is an additional ‘[cl’ helicity [21] to take into account. However, because there is only one 

unobserved gluon, the c helicity amplitude vanishes in the spinor helicity basis, and the differential 

2 - 3 cross-section is in fact the same for both schemes. Thus all pole contributions other than the 

one-loop correction are the same for both schemes; in order that the tiared divergences cancel in 

both schemes, the one-loop corrections must have identical pole structure - and they do. 

The above arguments are in fact not specific to the 2 + 2 process; one expects the pole 

structure for the FDH and HV schemes to be identical at next-to-leading order for any 2 --t n 

gluon process. 

In the CDR regularization scheme used by Ellis and Sexton, the answers for these helicities 

are of course the same as in the HV scheme. The two schemes differ in their treatment of the 

external or obsemed partons, and this difference shows up in the appearance of additional E helicity 

amplitudes, which we discuss in the next section. 
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13. Comparison to Previous Results 

It is clear that in the conventional dimensional regularization scheme, one must compute 

additional helicity amplitudes beyond those needed for the ‘t Hooft-Veltman or FDH dimensional 

regulators, and thus additional work is involved. What is less obvious is that these additional 

helicity amplitude are typically much more time-consuming to compute, because they necessarily 

involve more of the E . E terms, which tend to be more complicated than other terms (even though 

one only needs these terms through O(E) rather than O(8)). 

The use of either the HV or FDH schemes is thus clearly preferable for practical calculations. 

Indeed, in the particular case of the four-point function, the extra work needed for the E helicities 

is even more pointless than the above discussion might indicate, because after helicity-averaging, 

the answers obtained for the CDR and HV schemes are in fact identical thru O(8). 

The tree-level four-point functions computed in the two schemes provide a foretaste of this 

phenomenon. Using, for example, the helicity am&itudes given in section 11 (or from elsewhere in 

the literature [20]), and the tree-level [cl-helicity partial amplitudes, 

A&l’],21’1,3+,4+) = A,(11e~,2+,31e1,4+) = 0 

A,(odd number of ‘(~1’) = 0 

(13)1(2 3)z 
A1(1[~~,2~‘~,3-,4+) = -i6[!,) (12) (23) (34)(41) 

(12)‘(32)1 
-4(li”,2-, 31ci,4+) = -i$t,, (1 2) (23) (34) (4 1) 

(13) (24) (14) (2 3) 
JW”~, 21e1, 3[‘], 41E1) = i6&,6&, (1 2) (2 3) (3 4) (4 1) - (12) (3 4) (14) (2 3) 

i6&6f’e) (12) (2 3) (3 4) (4 1) 

(12) (3 4) (13) (2 4) 
“6il.jK~3~)(12)(23)(34) (41)’ 

(13.1) 

one fmds that 

CT, Id~e~;V = 4N;(N,1 - I)# (” + t’ + :&,1’:2’ + t2 + u’) 

h.“dLI.. 
(13.2) 

II* Id:“‘LR = 4N,1(N: - 1)g’ (1 - e/2)’ 
(3’ + t’ + u’) (2 + P + IL”) 

*lPu’ 
h.ki.i.. 

so that if we average over incoming helicities - 2 for each incoming ghmn in the HV scheme, 

2(1- c/2) in the CDR scheme, we find the same expression. 

What about the next-to-leading corrections to the four-point matrix element? The difference 

in the pole terms, if any, can be understood by comparing the singular regions of the 2 -t 3 matrix 
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element. The two schemes lead to the following results for the five-point matrix element (the CDR 

result is from ref. [14]), 

<z, 1d:“‘l’ = N:(N,1 - l)g’ c c I&-%)[’ 

hdkili.. 
nESs,Z. hckitie* 

where 

he~iesIA’e’iv = (12)(23)(:4)(45)(51) ,<T<, (“j’)‘+.” 
j3Cja35 

bee lblxl = h 
e (12)(23!(324)(45)(51) 

1 

(13.3) 

1 
x 

i 

(1 - c/2)’ c (jl j,)’ + 3c(3 + e/2) c (A(z) + fi(Z) + A(z)) 
lIjz9 &Z. 
h <ia 55 1 

(13.4) 

in which 
fi(l,2,3,4,5) = -(12)‘(23)’ 

fi(L2,3,4,5)= 2(12)(23)‘(34) (13.5) 

h(1>2,3,4,5)= -2(12)(23)(34)(45) a 

and where the dots represent terms that make only a finite contribution to crow sections integrated 

over unobserved particles. Thus after heiicity averaging, the difference between the two schemes is 

given by 

(13.6) 

Because of the explicit power of l in front, the only differences in pole contributions must come from 

those regions of phase space which produce a double pole in e, that is in which one of the final-state 

momenta must be soft (and in addition collinear to another glum). Consider, for example, the case 

when particle 5 becomes soft. The phase space measure behaves like 

E;-=dEs (13.7) 

while the coefficient in front of the parentheses in equation (13.6) behaves like l/E:, so that the only 

singular part of the integral comes from setting Eg (and therefore kS) to zero inside the parentheses. 

This yields 

(2-r)‘(12;;(2635(L3)4)(45)(51) (-(12)‘(23)‘-(23)‘(34)‘+2(12)(23)’(34)) =O (13.6) 
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so that there are no difkences between the pole contributions of the integrations over unobserved 

real particles in the 2 + 3 matrix elements in the two schemes, and there should thus be no 

difference in the pole pieces of the four-point matrix element in the two schemes. 

This is indeed what one finds. Explicit computation gives (we have dropped the O(8) terms 

since they are not needed) 

(13)2(2 3)2 
DispAI;1(1[L1,2[‘1,3-,4’) = -ib/!,, (12) (23) (34) (4 1) 

I?(1 - l /z)r(l + e/2) 

Wr(l- l ) 

(12)1(3 2)’ P(I - c/2)r(i + e/2) ‘I’ 
DispA4,1(11’1, 2-, 3”], 4+) = -i6& (1 2) (2 3) (3 4) (4 1) 8+r(i - l ) 

x (-; - 2 + ; (b(a) + w) 

DispAl;l(l~‘~,2[Cl,3~‘1,4~~1) = 

i6~~~)6&) (12) (2 3) (3 4) (4 1) - 
(13)(24)(14)(23) i6,3 6z, (12)(34)(14)(23) +i6~t sz3 (12)(34)(13)(24) 

(-4 ‘-“(12)(23)(34)(41) ( ‘1 ( ‘)(12)(23)(34)(41) 

x rl(l - e/z)r(l + e/2) 
8+r(l -c) 

(13.9) 

for the [cl-he&city partial amplitudes, so that for all helicity configurations of the AJ,~, one can 

write for the pole pieces, 

A$gY’Ar(1,2, 3,4) = r’(1;;/;;f(ie;ei2) (!$)“’ (-;-~+$(s)+Ip(t))) xAy(1,2,3,4) 

(13.10) 

After h&city averaging, the pole pieces are indeed identical for the HV and CDR schemes. 

Moreover, the finite pieces are identical up to order O(e), since that is the only difference which 

can be introduced by the h&city averaging. 

If we now compute the next-to-leading correction to the differential cross-section in the CDR. 

scheme, 

A~~(~,[.,)E. ~d~d41NLo = 

2gsN,3 (Nt - 1) Re c A:,.. ‘(o(l)x-~x), v(2)‘+,, ~(3)~-(‘,, o(4)*-“‘) (13.11) 

oES./Z, 

x Al,l(o(l)~-~‘~,o(2)~-“‘,u(3)~-~‘),o(4)~-~~~) , 

and add in the leading-order contributions, we fmd complete agreement with the result d(s, t, U) of 

Ellis and Sexton, equations (2.25-2.26) of ref. [14] (note that th ose authors compute the answer in 

4 - 2~ rather than 4 - E dimensions). 
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14. Consistency Checks 

There are a variety of checks that can be applied to the calculation pursued in this paper. 

One of the more important is the check on the gauge invariance of the partial amplitudes. There 

are two ways to perform such a check. One may choose a different set of reference momenta for 

a partial amplitude with given physical helicities, and verify that one obtains the same answer 

as with the original set of reference momenta (we have performed checks of this sort). One may 

also calculate a longitudinal amplitude, replacing one of the polarization vectors in equation (5.7) 

with the corresponding momentum, then picking physical h&cities and reference momenta for the 

remaining legs, and performing the calculation in the standard way. In the case of the four-point 

amplitude, there are three independent longitudinal forum one may calculate: A,,I(llL1, 2+, 3+, 4+), 

A,;1(1[Ll,2-,3+,4+), and A,;l(l[L], 2+,3-,4f), where ‘[L]’ denotes a longitudinal external leg. 

(The other configurations of helicities are related by the various symmetries of the partialamplitude, 

and the longitudinal values of the other partial amplitudes are related by the decoupling equations.) 

It turns out that the first and last of this trio are sensitive to the prescription (pS)‘lpazo + 0 for 

the case where the loop is isolated on an external leg, and thus can be used to verify it. (The same 

prescription is used in field theory calculations; to ou knowledge, no-one has shown explicitly that 

it is consistent and gauge invariant.) We shall discuss this point in greater detail elsewhere (171. 

With an appropriate choice of reference momenta - ks for leg 2, and ks for legs 3 and 4 - the 

remaining longitudinal partial amplitude is independent of this prescription, and thus serves as an 

independent check on gauge invariance. 

If one employs the spinor-helicity basis and performs the Grassmann integrations in the right- 

mover contributions (5.10) to the longitudinal partial amplitude A,;~(l[‘l, 2-, 3’, 4+), one find an 

expression proportional to 

~GB ma + u~B(%) + t&(C)) . (- ) (14.1) 

which is a total derivative with respect to ~1 after multiplication by the common factors (5.11), 

and thus vanishes identically in the string theory. Taking the infinite-tension limit of this object, 

using the sorts of expansions derived in section 8 (along with a prescription [36,18] for the contri- 

butions with the loop isolated on an external leg), one should should still obtain zero, of course; 

this is effectively a check on the algebra yielding the final answer from the kinematic~tensor expres- 

sion (9.1). In this particular case, the contribution from the three-points pinch is in fact identically 

zero, independent of the prescription on (pz)‘l,.,O; indeed, th e only non-vanishing contributions 
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come from the diagram with no pinches, fig. 8a, 

c qt - 5) + ; (9shlt//LSl - 9tlqs/pz1 + lot - 125 + 3611(t - 3)) 
St G ( 

+; (-Jinlt/P’/ (27hlt/$I - 72 - 186~) + thIs/jt*l (271n/s/$ - 72 - 186R) (14’2) 

-27~’ (@(s)t - O’(t)a) - 96s + 40t + sR(84t - 728))) 

the 1 c-) 2 pinch, diagram 8b, 

c - 
at 

-St + ; (9th/s/$ - lot - 36~t) 

+$ (-27th(s/$] (l+/p2/ - 60 - 186~) + 27x’@‘(s)t - 40t - 8461(t) 
> 

(14.3) 

and the 1 u 4 pinch, diagram SC, 

2s + & (-9shlt/p’l + 125 + 36Ra) 

+A (276 l.n It/PSI (ln (t/$1 - 72 - 186,) - 27x’@(t)a + 966 + 726Bs) 
> 

(14.4) 

where C is a normalization factor (which includes spinor products), and where we have retained 

only the dispersive parts (the vanishing of the absorptive parts would follow trivially from the 

vanishing of the dispersive parts). The reader may verify that the sun of the contributions in 

equations (14.2-14.4) vanishes, as it should. 

In additional to such checks on gauge invariance, one may also check various symmetry prop 

erties of the partial amplitudes and the decoupling equations they must satisfy; we have given 

examples of these checks in previous sections. 

Another check is on the cancellation of infrared and collinear divergences with those arising 

from singular regions of phase space of an appropriate 2 + 3 process. We will not discuss this 

cancellation in detail, but it can be done most conveniently using the universal soft and collinear 

functions of Giele and Glover 1161, and the poles do indeed cancel as expecmd’. 

A final consistency check on the answers comes from unitarity, that is, the optical theorem, 

and it is to this that we turn next. 

15. Optical Theorem 

In its most commonly-used form, the optical theorem relates the imaginary part of a forward 

amplitude to the integral over all phase space of the amplitude squared. To leading order, this 

’ The appropriate 2 + 3 process for strict cancellation is in fact M unphysical, crossed process, with all legs 
treated M tin&state partidea. What should happen in a physical process, such LU that ariring in the scattering 
of gluonic partom within two incoming hsdrons, is the cancellation of soft and final-state collinear divergences, 
and the factorization of remaining collinear div crgenccs into (universal) glum distribution functions. J. Guillet 
bas Momred us that he har verfied tbia factorixstion for our four-point h&city amplitudes in the CDR scheme. 
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amounts to relating the imaginary part of a loop amplitude to the integral of a tree amplitude 

squared. We will in fact check a more general form of the optical theorem, which relates the 

imaginary part of an amplitude to the interference of amplitudes with different initial states (but 

common final state). 

In the calculation at hand, there are several subtleties. The simplest is the fact that the spinor 

helicity basis introduces additional phases (associated with the external legs) into the amplitude; 

as a result, we must replace ‘real’ and ‘imaginary’ with ‘dispersive’ and ‘absorptive’, respectively, 

as distinguished by their origin in cuts of logarithms. 

A more serious subtlety has to do with infrared regularization. In perturbation theory, a 

massless gauge theory leads to infinite-range forces, and thus to a divergent total cross section. 

Both sides of the optical theorem relation must therefore be calculated using an infrared regulator, 

for wbicb we shall again pick dimensional regularization. 

The optical theorem tells us that 

ZAbsp+,(l,Z,i,i) = ; 

where d’-‘LKPS(3,4) denotes the (4 - e)-dimensional Lorentz-invariant phase space of partides 3 

and 4, excluding the symmetry factor for identical particles which we have specified explicitly. (The 

factor of l/i on the left-hand side divides out the additional relative phase between an amplitude 

and the usual convention employed in Feynman diagrams.) 

We shall now proceed to show that the results for the partial amplitude AQI satisfies this 

constr8int. 

Extracting the O(g’) coefficient of Grljl(l, 2, i, i) = NC Tr(Y’~T’~T”~T”*) from the right-hand 

side of equation (15.1), and dividing by g’ ($)“‘, we find that it is 

14kl(iA1,2x*, iAj,iAj) = 

~(~a)e/z~~~~i~~~,,IJd4-~LIPS(3,4) [A:“e’(i-Xj,i-X1,3,4)A:‘et(lXl,2Xa,3,4) 
(15.2) 

+ Ap’(i+,i+,3,4)A:‘eC(2 x+,3,4)] 

where A~*(lx~,2x1,3x3,4**) means [Ap(lA’,2X’,3”,4X4 )I*. Using the symmetry properties 

of A? and relabeling integration variables, we can rewrite 

r,,,(ixl,2~~,i~:,i~l) = 

b2)“’ ,,,,& / d’-=‘SP, 4) A, tr~a*(j~,,ixl,3X~,4X()A~(lX~,2X~,3X’,4X4) (15.3) 
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Id;l(l+,2+,i+,f?+) = ($)‘/* /d’-‘LIPS(3,4) [Ap*(i-, i-,3+,4+)@“(1+,2+,3+,4+) 

+ Aye*@, i-,3-, 4+)Ay(l+, 2+,3-, 4+) 

tA~“(i-,i-,3+,4-)A:‘ee(l+,2+,3+,4-) 

+A:““(i-,i-,3-,4-)A:“‘(lt,2+,3-,4-)] 

0 
(15.4) 

Similarly, we find 14;l(l-. 2+, 3+, 4+) = 0. The results in section 10 show that the absorptive parts 

of the corresponding partial amplitudes also vanish, satisfying the optical theorem (15.1) to the 

required order in perturbation theory. 

For the remainin g partial amplitudes, the relation is non-trivial. Let us begin with the partial 

amplitudes in the FDH scheme. We have 

It;I(l-,2-,i+,i+) = ($)‘/’ 
I 

d4-‘LIPS(3,4)Apc’(i-,i-,3+,4+)A~(1-,2-,3+,4t) 

= (p2)+ J (12)' [ii]’ 

d4-‘LIps(3’ 4, (12) (2 3) (3 4) (4 1) [i4] [4 31 [3 i] [i i] 

I,;I(l-,2+,i-,i+) = (py/d4-‘LIPS(3,4) [A:‘eD*(i-,it,3+,4-)A:.Ce(l-,2f,3+,4-) 

+A:“‘*(i-,it,3-,4t)A:‘“e(1-,2t,3-,4t)] 

= (p’)“’ J (14)‘[i414 + (13)4[i3]4 

d'-'LpS(3'4)(12)j23)(34)(4i)[i4][43][3i] [ii] 
(15.5) 

The integrals are evaluated in appendix VI; with those results, 

^ ^ (12)’ 
~4;1P-,2-,1+,2f)= (12)(2i)(ii)(il) w;+‘:y”’ (SJ (+[-#I) +qE) 

r4tl(i-, 2+, i-, it) = 
(1 i)’ l?‘(l - E/2)l?(l + c/2) 4apZ e’s 

(i2)(2i)(ii)(ii) 4*q1- c) 6) (12) 

( 2 + [(li)2-(12)(2i)]r In -(i2) 
x -- 

(ii)’ [ -1 (12) 

-(Zi) [Il(li)a-3(12)(2i)+3(12)‘]’ 

3(li)3 

(15.6) 
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From equation (11.X), we find the following expressions for the s-channel absorptive parts of 

the one-loop partial amplitudes (that is, the coefficient of O(12) in the absorptive part), 

Ah, ~~r;~~~-, 2-3 3+,4+‘) = (12) (2$2:3(4) l4 ij 
P(1 - e/2)l?(l+ C/2) 

8xr(l -E) 

Absp, ;,.I(,-, 2+, 3-, 4+ - (13)’ P(l - E/2)r(l + C/2) 
1 - ) - (12)(23)(34)(41) 8xr(l- e) 

2 
x 

[(13)’ - (12)(23)]’ In (23) 

l (13)’ l-l (12) 

+ 
(23) [11(13)‘-3(12)(23)+3(12)‘] 

6 (1 3)3 

The reader may substitute these various expressions into equation (15.l), and thereby verify that 

it is indeed satisfied. 

This completes the check of the optical theorem for the FDH regularization scheme. The reader 

will have noted that the absorptive parts are identical in both the FDH and HV schemes; this can 

be understood as follows. In the HV scheme, we must also sum over internal ‘[E]’ helicities, so there 

are additional contributions to &;I, 

6r~~(l*~,2x., ixi,ixB) = 

(lW1 c 
~I.l*+Mi.1.-~ 

/ 
d’-‘LPS(3,4) A:‘t’ l (iX),iXl,3X1,4X*)A:‘“‘(1X1,2X~,3X~,4X~) 

($,A,)={ “‘yI,;l’ll ) 

= (py / d’-‘LPS(3,4)Ap* (i.~j, i”i, j!?, 4!‘! jA~.t(iX,, 2’,, j(~!, 4,‘! j 

(15.8) 

where the other terms drop out because partial amplitudes with only one ‘[e] h&city vanish. But 

@!;(l-,2-,i+,i+) = (p’)e’1~d4-‘LIPS(3,4)A~*(~+,i+,3[e~,4[’~)A:’.C(l-,2-,3~‘~,4[e~) 

0 
(15.9) 

because A:“‘(l-, 2-, 3!‘i, 4[‘1) vanishes. Furthermore, 

6~~~(1-,2+,i-,i+)=(~2)e~‘/d’-~LLPS(3,4)A~*(i+,i-,3~f~,4:‘~)A~(1,2+,3[L:,4~~~) 

= -.$ (p’)‘/’ 
/ 

(3 g2(4 I)~ [3 i]‘[4 i]’ 

d’-CLIPS(374) (12) (23) (34) (41) [i4] [43] [3 i] [ii] 
(15.10) 
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As shown in appendix VI, the integral is finite, so that the whole contribution is O(c), and as a 

result, both sides of the optical theorem are identical in the HV and FDH schemes. 

16. Summary 

A major difficulty of the conventional Feynman diagram approach to perturbative QCD c&u- 

lations is the proliferation of terms as the number of loops or external legs increases. For example, 

at the starting point of a conventional Feynman diagram computation of the one-loop four-point 

amphtude, one would be faced with over ten thousand terms. 

In this paper we have presented a new approach for computing the pure gauge contributions 

to the one-loop helicity amplitude; these contributions are by far the most difficult to compute 

by conventional techniques because of the complexity of the non-abelian vertices. Our approach 

makes use of the reorganization of the amplitude inherent in string theory. This string-based 

approach bypasses much of the algebra associated with Feynman diagram computations. Although 

string theory lies bebind the derivations of the new approach, a practical set of rules, such as that 

presented in section 9, makes no reference to string theory. 

The string-based method meshes naturally with the use of the spinor helicity formalism. The 

loop momentum has already been integrated out at the starting point of the string-based compu- 

tation, so that all invariants are already expressed solely in terms of the external momenta and 

polarizations. The spinor helicity basis makes possible vast simplifications at this very first point 

of the computation. Another important itigredient is the color decomposition of the amplitude into 

smaller gauge-invariant partial amplitudes, eliminating many of the large cancellations inherent in 

Feynman diagram computations. The string also provides a systematic and compact expression for 

the a-point amplitude, arising from the fact that at each order in periu~‘b&ion theory ihrre is uuiy 

a single string diagram. 

We have constructed string versions of ordinary field-theory dimensional regulator schemes to 

handle the usual infrared divergences that appear in gluon amplitudes. 

We also presented the fist computation of the one-loop four-point helicity amplitudes as well 

as a variety of checks verifying the correctness of this calculation in the string-based method. 

The extension of this method to include virtual fermions is trivial; the extension to include 

external massless fermions is straightforward. We believe that it should be possible to extend this 

new computational technique to the multi-loop case, and to the case of massive fermions as well. 

We thank W. T. Giele and N. Glover for discussions on infrared cancellations, regularization 

schemes, and diagr ammology; FL. Carlitz and R. Wiiey for discussions on the optical theorem; 

A. Duncan for discussions on the derivation of field-theory-like rules; J. Collins, R. K. Ellis, and 
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A. H. Mueller for a variety of discussions on QCD and regularization schemes; and V. Kaplunovsky 

and W. Siegel for discussions on dimensional reduction; K. Roland for discussions on string module 

space. D. A. K. would like to thank the theorists at the University of Pittsburgh for their hospitality 

during the writing of this paper. 

This work was supported in part by the US Department of Energy and in part by the National 

Science Foundation, grant PHY-90-24764. 

Appendix I. String Model 

In practical computations for QCD it is not important to have a fully consistent model, al- 

though it is important to have an explicit example of a consistent model with the required properties 

in order to ensure that no extraneous difficulties enter. In this appendix we provide an explicit 

example of s heterotic string model containing an SU(9) pure gauge theory in the infinite string 

tension limit. There is no particular significance to nine colors; it just happens to be an easy model 

to construct and analyze. It is not dif?icult to construct such models with other gauge groups, 

including SU(3). The model we present is not space-time supersymmetric since it contains a pure 

nonabelian gauge theory in the field theory limit. Once the field theory limit of amplitude has 

been computed in one particular model the extension to all SU(N,) amplitudes is straightforward 

since the amplitude satisfies a systematic color decomposition. To construct an appropriate four- 

dimensional string model, we follow the fermionic formulation of Kawai, Lewellen, and Tye (KLT) 

P91. 

The four-dimensional model at hand is specified by the five “basis” vectors, 

w, = ($ ,I,) 
WI = (;‘“o” oq 
w, = (oQ~9~ooo~~ (;;;) (ioo) ($00)) 
w, = ( o~~go~oo~ ; (0;o) (g) go)) 
w, = ( o~~soo~o~ ; (00;) (00;) pi)) 

(I.11 

where I” signifies n contiguous components with value 1. The triplet grouping for internal right- 

movers arises from requiring world-sheet supersymmetry [29]. Each component of a refers to the 

world-sheet boundary conditions on the torus of a particular complex fermion. For example, the 
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1/2’s refer to antiperiodic (Neveu-Schwara) boundary conditions while the O’s refer to periodic 

(Ramond) boundary conditions. The gauge group G that we will be interested in corresponds 

to the first nine left-mover oscillators, while the space-time index for vectors is carried by the 

first right-mover complex fermion. It is straightforward to show that this model satisfies the KLT 

constraint equations presented in ref 1291 and hence is modular invariant. 

We do not present a complete analysis here; it is straightforward though tedious to verify the 

properties of the model. (A more detailed discussion was presented in earlier work [47].) Here we 

are interested in the spectrum of massless particles, since only these will survive in the infinite- 

tension limit. Sectors containing massless particles must have both left and right vacuum energies 

that are zero or negative. There are seventeen such sectors; sixteen of these are easily eliminated, 

as exciting a gauge oscillator in those sectors would necessarily yield a massive state. These sectors 

also contain no tachyons. The remaining sector is the Neveu-S&van (Wo) sector, which is the 

one containing the graviton and the gauge bosom. The KLT coefficients of various terms in the 

generalized GSO [43] projection in the Neveu-Schwarz sector are given by CA” = - co8 2x& 

where & is the boundary condition of the f?rst right-mover. By summing over the terms in the 

GSO projection states are either removed or kept. In particular, the generalized GSO projection 

condition on the states in the Neveu-Schwarz (Wo) sector is 

where NW, is the number of excited oscillators and the statistical factor J< = W,?,, the fist right- 

mover component; any state which does not satisfy the projection condition (1.2) is removed from 

the spectrum. Since the projection conditions depend on the choice of boundary condition basis 

vectors we can control the spectrum of the model by choosing and appropriate and consistent set of 

vectors. In particular, the generalized GSO projections in this model imply that the only maasless 

particles which carry gauge charge of the SLI(9) x SU(9) subgr ou p are the gauge bosom themselves. 

The gauge group of interest G is specified by the first nine positions in the basis vectors, while the 

secondary gauge group G’ is specified by the second nine positions. (The above properties hold 

independent of the choice of consistent KLT ‘structure constants’ hi?.) 

Thus, this string model yields a tachyon-free pure gauge theory in the i&nite-tension limit. 

Appendix II. Decoupling of Secondary Gauge Group 

For the sample model of appendix I, the the Neveu-Schwarz (W,,) sector of the string model 

(which is where the gauge bosom of interest live) consists of a direct product gauge group, 

SU(N,) x SU(N:) x U(l)m (where N, = N: = 9 for the particular model). The 0(6-l/‘) left-mover 
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contributions to the string partition function can therefore be grouped into three types: those as- 

sociated with the SU(N,) gauge group G of interest those associated with the secondary SU(N:) 

gauge group G’ and those associated with any remaining string gauge groups. 

In this appendix we demonstrate that the secondary gauge group decouples in the field theory 

limit as claimed. The decoupling of the secondary gauge group is a bit trickier because its decoupling 

depends on summin g over boundary conditions generated by the world-sheet boundary conditions 

generated by W,,W, and W,, which also control the number of space-time states in the string 

model. Ultimately, these string intricacies are irrelevant in practical QCD computations, since 

the only relevant fact is the the unwanted secondary gauge group decouples as expected; in a 

computation the contributions from the unwanted gauge groups are simply dropped because they 

anyway will not contribute. 

Labeling the the world-sheet boundary conditions associated with l:auge group of interest PO 

and those associated with the secondary gauge group as DC- the O(i-‘I’) terms in the partition 

function (8.8) can be rewritten as 

** 

-2+- l/l,dl.r cos 2*&i = -2~j-“‘e”‘~~~ N. COS(~YT~~)+N~ COS(~T&)+ c cos 2&i 
i=N.+N:+l 

> 

(D.1) 

where we have explicitly separated out the contributions from both the gauge group of interest G 

and secondary gauge group G’. 

As discussed in section 8, for the partial amplitudes associated with a single color trace, the 

non-vanishing contributions in the field theory limit arise from only interferences between the left- 

mover fermionic Green functions and the left-mover partition function. (The double trace partial 

amplitudes which recieve contributions from only an interference between two ‘cycles’ (each of which 

contribute a single power of g II2 ) of left-mover Green iunctions are independent oi the secondary 

gauge group and therefore are trivially decoupled from the secondary gauge group.) 

From equation (8.13) or (8.16) we find that for the single trace partial amplitudes the color 

factors are of the form 

c $0 [N&2+, + ,-+b) + N;(eh’&, + e-ki‘%l ) + 5 

i=N.+N:+l 

(ez*i‘%; + ,-a+h, )] [-,-hi&] 

PI 

where the terms in the first bracket are from the string partition function and the terma in the 

second bracket are from the left-mover Green functions. 

The sum over the boundary conditions induced by world sheet boundary condition basis vector 

WI removes contributions to the field theory limit from all gauge bosom except from the SU(iV,) x 

SU(N:) subgroup, as discussed in section 8; contributions where the phases obtained from the WI 
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boundary condition vector do not cancel will vanish. That is, terms proportional to .z*~*~@c lead to 

a vanishing result while terms proportional to unity or e*a*i(pc-pc’) will not vanish when summed 

over these boundary conditions. This then leaves 

c “I;‘” p& + ~Je2*‘(Bo, -Pd) 
(D.3) 

as potential contributions left-mover contributions. 

We now show that the interference factors ei2*;(flc-@b) b e ween the G and G’ gauge groups t 

will vanish from the sum over the Wz,W, and W, boundary conditions. To see how this works 

we must take into account the right-mover phase contributions in (8.27) and multiply them by the 

factor of eiari(~~-@c’) found in equation (II.3). This means that the sum over boundary conditions 

will be of the form 

c cos(27rpT) cos(2nPRi)e~l*‘(PC-Pc’) , i = l,Z,...,lO PI.4) 

a 

for the sample model of appendix I. For i = 1 this becomes 

&C(-l) 
no+n.+na+n,(_l)no+nt+n,+nr(_l)nr+n,+nr = o 

(D-5) 
ni 

while for, e.g. i = 2 we get 

&CC-l) 
no+n~+n,+n.(_l)no+n.(_l)m+n,+“r = o 

U=‘3) 
ni 

It is not difficult to see that all other potential terms vanish since it is not possible to cancel all 

factors of (-I)“<. Thus, we see that the gauge group G’ decouples as expected. 

Appendix III. Notation and Normalizations 

We define theta functions for general twisted boundary conditions by 

Then 

5 [I (", 7) = .*ia~l,l*iQ:(y-P-l/~)~*(" + Qy. - p,T) 
where 19~ = 8[:] is the conventional first Jacobi theta function. 
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We remind the reader of the definition of the Dedekind q function, 

9(T) = @/‘2 fj (1 - e**inq 

(rn.3) 

where the prime indicates differentiation with respect to the first argument. 

The bosonic partition function is 

Z,(7) = (9(T)?j(7))-2 (~~p-‘[~,(~)lC (rn.4) 

where D = 4 - E; as discussed in the text, to maintain modular invariance the torroidal compacti- 

fication function 

F,(T) = c e -a*inmRcre-*(n’+m’)Imr 

n,mEZ 

should be retained, although in the gauge theory limit of the string it reduces to a factor of unity. 

[For simplicity we have set the compactilication radius to &? = -1. 

We define 21 [g] (7) to be the partition function for a single left-moving complex fermion with 

[i] boundary conditions, 

z* [;I (T) = n [,l*iiI~re2,i(+-p)*.j = ,-,*i(l’,-=)(~~~~~[~] (0 IT) (m.5) 

where the phase is present in order to be consistent with the KLT definition [29]. It is really 

irrelevant, and could be absorbed into the defmitions of the summa tion coefficients C$. 

Putting the pieces together, the complete partition function for the set of fermions with [$] 

boundary conditions is 

257) = 2 a’ [I p (7) = 2dr)ZF [~](~)=2B(~)‘e~L2,[~~~](~)“~z;[~~~](T) 
kl i=l 

= (ll(T)ii(T))-” (VG) -ltr [F,(r)]’ 
‘en=r. e-l”i(1/2-n’Li)(1/2+~‘~)~[Qz~] (0 iT)“““” ezni(l/2--oRi)(l/Z+PRi)~[OIR~] (0, T) n n 8. i=l 9(r) i=, is(r) 

P.6) 

The bosonic correlation function, GB(Y), is defined via 

(X~(Y~,Y~)X”(Y~,~,))~ = f‘“G~(v = v1 - ~1). (rn.7) 
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It can be expressed in terms of theta functions, 

(m.s) 

A dotted variable, for our purposes, will always be taken to signify differentiation with respect 

to i7, 

2=+x. P-9) 

In a slight abuse of notation, we write the correlation function for right-movers as &B(F) although 

in fact it is equal to d,(v). 

We thus have 

(Iu.10) 

The fermionic particle correlation function G.n[z]( Y and anti-particle correlation function ) 

&;F[;](Y) are defined as follows (excluding the case a = p = 0): 

(P+(,,) *+2))Bpt7 = PjG, [I ; (v = y - Y2) 
(*i(v1) *j+(v,));;l = bijbF II ; (v = VI - Y2) (III.11) 

where here the expectation value is understood to exclude a factor of the partition function. 

These correlation functions can also be expressed in terms of theta functions, 

GF II ; (~1 = fq;;l (~lW~~1(01~) 
zr~[3(47)s[;](ol~) 

&[;]W = GF[; 1 ;]W = -“F[;](-“) 

GF ; (i7) = [I s[;] (PI -+9'[;] (01-T) 
2r9[9 (i7I-+9[;] (01-T) 

&[;](z)=G~[:$v)=-GF[;](-V) 

(lII.12) 

where the last equality derives from a theta function identity. 

The case a = p = 0 demands special treatment, because of the presence of the zero mode; 

however, in this paper since we are only concerned with the pure gluon contributions, which live in 

the Neveu-Schwarz or W, sector of the string, we do not encounter fermionic zero-modes. 

The self-contractions are obtained by taking Y + 0 but with the pole piece subtracted [50] so 

that 

SF (III.13) 
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Although these self-contraction pieces are important for deriving the U(1) decoupling equations 

ill], in practical computations with gluons, the self-contractions drop out trivially because they 

ace associated with the trace over a single SU(N,) generator, Tr(T’) = 0. 

With the modular transformation properties of the theta functions, one can derive the modular 

transformation properties of the partition function and the various correlation functions. With these 

properties the modular invariance of the string amplitude (5.7) can be verified for a consistent string 

model although we shall not do so here. 

The vertex operator for emission of a gauge boson, in the FI picture for the right-movers, is 

(IlI.14) 

or, using Grassmann variables to put it into an exponential form, 

V’(c, k; v,i?) = v’&Jj;Taij : 
I 

d& d& de, dt?, 

=xp (. dik . X(v,r) + OIV!‘+(~) + e2qj(v) 

+eAc T?(F) + ihe, k T(F) + ere X+7)) : 
(III.15) 

The N-point string amplitude in dimensional regmlarization in 4 - E dimensions is then given 

by 

.&=i,$~~)$/&(Im~) /d2vl.../d”v,-l 

Z,(T) c C/g& &B [I j (7) (V~‘(Y,)~..V~“(“*))~;, (IlI.16) 

where the different versions of dimensional regularieation are determined by the prescriptions used 
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in 2~ as discussed in section 7. Evaluating the correlation functions gives (in Minkowski space) 

calA, = i ~~~~~2~ ~n/~-?(,,$&~)” Ta’,,ml . ..T”“.,,,“‘” 

d% 
(ImT)‘+‘/~ 

/ (@-I&~ d&a de;3 d’b ) / @da-) c c$2$(T) 

a.8 

+ i6/T;(Bi30jlki . Ej + &,ejJkj . si) GF 

- iv5(ei3ei,kj 6; - ej3ejrki . Ej) dB(Y{ - Yj) 
+ Oi,f/jrc; . Cj GF “8: (2; - Fj) 

[ 1 

+ ei3eilej3ej,Ei cj GB(isi - 2j) 1 . 

This formula is valid in all sectors except Ramnnd-Rmond, where the fermionic zero mode de- 

mands special treatment. However, that sector enters only into parity-vi&.ting amplitudea, and 

so is not relevant to any of the calculations in this paper. The normalization of the amplitude has 

been calculated by Polchinski (511 and Sakai and T&i [52]. 

Appendix IV. Field Theory Limit Expansions 

We need the expansions of the Green functions and the partition function in two limits: Y + 0 

andImi+m. 
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As Y i 0, 

exp (GB(v)) + IvI-~/~ x constant 

while in the limit IDIT + co, 

0 21 /3#0 [ 1 -q -l,12e*iRcr,6 (I _ ,-hq3) (* _ 2,pR.rCos2Tp) 
21 

0 < (2 4 l/2 P 1 _ ~(~‘-~+1/8)/l.riR~r(p’-a+l/s)/l) (l-Qe DI l*roRere-2ri0 _ ql-oe~~i(l--p)RITel*iB 
> 

2, II2 [ 1 P -q ---l,21e--*iRel,ll (t _ 2~‘/le”iROIcos2np+(je’*‘R’I) 
=P (GE(Y)) - =P x constant 

iImv cosnF 
G&Y) + - - - 

ImT 2sinxi7 

GF 
1 _ ,ye2ridlIr,*ni(Y-P) _ ql-a.2*i(l-~)R.r,-~ri(“-p) 

1 _ ~ael*ictRcT,-2*iP _ ~*--aelri(l--o)RIrel*iP 

_ 2@piR’lelriL+-1,2) shn” 

GF 

0 

GF 0 # 0 (‘) + Zsinxpsinri7 [ 1 sin?r(P - ii) 

GF 

(N-2) 

Retaining only the leading terms in dm”, we can simplify the Green’s functions further, 
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(&m(z) = sign&n+)), 

=P (GE(~)) -* exp 

&B(F) + ; 

1 
G&Y) --+ -~ 

2Im7 

~~~~~ (Y)-+--i~in~(v)(e [ 1 .’ *%m(“)ReYe-“l Im Y, _ prle re-*isir+) Rcve*,Im Y, 
GF 

[ 1 
‘I?” (I/) - -isim(v) (e *isim(u)Re~~-*~h~~ _ ~l/~erriRore-*i*im(u)RIvenlimvlelni,im(v)B 

-qe 
^ IriRe I,-li,im(v)Reverl*mvle,rilim(v)B 

~l/~~-"'R'l~-~"im(~)Re~~*IIrn~,,lri.irn(~)P > 
(N.3) 

A special case of particular interest for the partition function is (with G,, = (i”/)‘“) 

2 ; (T) = (Im~)‘l’-‘rl(~)-“?i(?)-llF,oL ‘“ii”‘$~] “yp[;j 
[ I i=l i=l 

= (ImT) c/n-lp/l,-*iR.r(l + 24Be’l’Re7)F~(r) 

x 
( 

Len DlO‘ len OlD‘ 
1 - 2lj lppR.7 

z 
cos 2npL; + 4QPRar c cos 2xpLi cos 2?rPLj 

i<j=l > 

( 

lonP.m 
x l- Zpe-"iRer c cos2"/3Ri 

i=1 ) 
(N.1) 

Appendix V. Integrals for the Loop Calculation 

The class of integrals we need is 

(-JY-+ lo,,,, d’Y ;;l;‘+‘“,Fy;&y 

where P is some polynomial, and where x = t/s. 

Through the change of variables 

Yl = (1 - Y)(l - 2) 

Y2 = 41 - Y) 

YS = Y(l- 2) 

(V.1) 

(V.2) 



which also implies that yr = zy, we can transform the original integral into 

(-s)-w~ 1’ dr 1’ dy l1 dz [y;!” ,~~~~-,;1~~~,,“~~~:~~~~~~~~. (V.3) 

The y integral is now elementary; we may note that only terms symmetric under y + 1 - y will 

survive, so that we can replace the powers of y in the numerator with powers of Pu = y(1 - y) as 

fol.lows, 

1-l 
1 

Y-+5 

Y2-)2- y l P 

yJ - ; (1 - Pv) 

y’ - Pi - 2Py f ; 

y5 - ; (5Pi - 5P” t 1) 

ye - -P, + ;P; - 3P” + ; 

(V-4) 

The z -t z symmetry can also be used to modify the polynomial. 

We might thus focus on the integrals 

dzdrz”zm[(l -z)(l - Z)+xzz!-‘-“’ 

but it will be convenient to consider a somewhat mme general integral, 

1 1 
J(% m, Ii 6 xl = 

Jl 
dzdt z”z”+~(~ - 2)’ [(l - Z)(l - Z) t Xz# 

0 0 

w+o a”J(o,m,l;n+t;x) = qn + 1 + E) x 
q1+ 5) 

= qn t 2 + 0 
a; ~(nf~+2+~,~+l)1F~(~+i,i;~+~+~+3+E;1tx) 

[ 

(V.5) 

(Note that any polynomial in z can be expressed linearly in term of the P,;, = zm(l- 2)~ =, and 

1.) 



An inspection of the integrands reveals that we require the following set of integrals, 

.7(0,&O; -2 - 42; x) 

J(O, *,o; -2 - 42; x) 
J(l,B, 0; -2 - E/2; x) 

3(1,1,0; -2 - e/2; x) 

3(2,0,0; -2 - 42; x) 

J(O, 1,l; -2 - 42; x) 

J(O, 2,l; -2 - 42; x) 

3(0,3,1; -2 - 42; x) 

J(l,l,l; -2 - 42;x) 

to O(t) 

to O(E) 

to O(1) 

to O(1) 

to O(1) 

to O(e) 

to O(c) 

to O(e) 

to O(1) 

(V.7) 

To express these integrals, we should first introduce a bit of notation for expressing imaginary 

parts. D&e O(z) and G(z) via 

1 
G(z) = 7 logarg(z) 

m 

O(z) = ; logarg(-z) (V4 

G(z) = /O(z)1 = d(z) 

where z is assumed to have an infinitesimal imaginary part in order to make these objects well- 

defined. The cut in the argument of the logarithm is taken along the negative real axis. That is, 

in the usual complex plane, 

O(z) = 0, O(2) = -1, 2 = /r/ + io+ 

G(z) = 0, O(z) = 1, 2 = 121 + iO- 

G(z) = 1, O(z) = 0, Z = -III +iO+ 

G(z) = -1, O(z) = 0, z = -12 + KJ- 

W.9) 

G(z>O) = 1, 6(z < 0) = 0. (V.10) 

Note that in the usual s plane, the branch cut in any amplitude runs along the positive real axis, 

and by convention the momentum invariant is just below the branch cut. This corresponds to 

having the momentum invariant just above the branch cut in the usual complex plane, so that 

O(S) = 1 in the physical region. 
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Note that we may write in general 

@(z)G(z) = 0 

03(z) = O(z) 

G”(z) = G(z) 

@l/z) = -Q(z) 

The correct prescription on its derivative will be 

a.@(z) = 0 

not a 6 function. We also have the additional properties 

G(d) = O(z) 

0(-z) = G(z) 

(O(z) - G(z))’ = 1 = O’(z) t G’(z) 

We can relate e(t/s) to Q(t) and O(J), 

G(t/s) = G(t) -G(6) 

= Q(t) - O(6) 

oyt/s) = 1 - S?(t/J) 
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(V.11) 

(V.12) 

(V.13) 

(V.14) 



With these definitions, one has 

.7(0,0,0;-2-~/2;x)= -(lt~;2)~x [z - ;lnlx] - ; ($ - ir;;q + O(2) 
c 1 

~(0,1,0;-2-r/2;X)=-(l+~;2)cX 2- zj 
[ 0 

& (l2 ix\+ ?FW(x) t --~x)w] + O(E2) 

1 
J(l,O,O;-2-42;x) = -x(1tx)' 

[ 
-+n21xl + (l+x)lnlxl- ?+w 

- is(x) (xln 1x1 - 1 - x) 1 t O(e) 

J7(1,1,0; -2 - +Gx) = x(1 ix)3 1 (ln,x, + 1+ x)(xl”lxl - 1 -x) ta’x@(x) 

t irG(x)(2xinlxl - 1 +x2) 1 + (34 

.7(2,0,0; -2 - c/2; x) = 1 
x(1 + xl’ [ 

- x(x - 2) (Q (xl+ n2@(x)) 

t(5X~t4X-l)lnlXI+X3-3x-2 

- bTG(x) (2x' In 1x1 - 4xLn Ix1 - 5x’ - 4x t 1) 1 t O(c) 

~(0,1,1;-2-~/2;x) = -(1 ix), 
1 

(1 + xl’ 
- x 

+; -g? 1x1 t 
( 

L$z In Ix, - ;@‘(x) f i&(x) (y - In lxl))] t o(ca) 

3(0,2,1; -2 - 4% xl = - (1 + $)$” c/2) (1 +lx), 
x - i 

(1-t xl” + f -Q Ix, + Lz&qx, + (1-t XY- - “f@z(x) 
X ( 

-i*G;x)(x-x-l &] +w: 

2r(* -e/z) 
~(0~3~ 1; -2 - d2; xl = (1 f e,2)r(4 _ E/2)X 

1 

1+22(1+x)' ( - 
3(lf# +(1+x)(x1 t5x-2)h lxI+3x~zIxl 

t 3xzxOa(x) t k&(x) (Sxhlxl + (1 +x)(x’ f 5% - 2),>1 f ‘=(=‘) 

1 
.q*,*, 1; -2 - 4% xl = 2x(1 + x)' 

[ 
x(2x - 1) (Q IXI t “TX)) 

t (x - 5)(1tX)XInlXlt 1 -3x1 -2x3 

t ixG(x)x (2(2x - 1) lJJ /xl t (x - 5x1 t XI)] t O(E) 

(V.15) 
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Appendix VI. Integrals for the Optical Theorem 

We wish to evaluate the integrals 

zo = (/2)@ J &LLIPS(3,4) 
(I 2) ’ [ii i]’ 

(12)(23)(34)(41) [i4] [43] [3i] [ii] 

I,, = (.L?)“’ J Ii+‘LPS(3,4) 
(13)‘[i3]’ 

(I 2) (2 3) (3 4) (4 1) [i 41 [4 31 [3 i] [ii] 
W.1) 

I’b = ($)‘/ / d’-‘LlPs(3,4) 
(14)‘[i4]’ 

(12)(23)(34)(41) [i4] [43] [3i] [ii] 

and to show that 

I,, = (p’)“’ / d’-‘LE’S(3,4) 
(3 i)l(4 ij’[3 i]‘[4i]’ 

(12) (23)(34)(4l) [i4] [43] [3i] [ii] 
w-4 

is finite. In the four-point case, we can solve for some of the spinor products, using on-shell 

conditions and momentum conservation (k, + k, + k, + k, = 0, k, + k, + ki + kj = 0): 

(2 3) (4 1) = _ (2 3) (12) (3 4) 
(12) 

[3i] [ij4] = Ctf) (3i) 

(12) (34) 

Pf.3) 

so that 

1, = (c(‘)“‘(12) a [i i]’ / d’-eLIPs(3,4) 
(3 2)‘(3 i) 

r& = s s s s ($)‘/’ 
1 

Irl w P3 I4 
(l2)‘[ii]’ J &-'Lps(3,4) k~'k~krk: 

(3 2) (3 i) 

Z;b = s!d,s~,sp,s,, (P’)“’ l 
(i2jz[ii]’ J d'-cLps(3,4) kf'kPkrk: 

(3 2) (3 ij (W.4) 

= s,ls,,s,,s,, (P2)“2 l J 
k’, k” kg, k’, 

(l2)‘[ii]’ 
d’-‘LIPS(3,4) ‘(4;j &’ 

Z’, = (p’)‘/’ l 
(12)‘[ii]’ J d’-cLps(3 

1 
4) (31?(4l)‘[3 il’[4i12 

(4lj(3i) 

where S, = (1-I rr ii-). (Note that we need only the sum of I’. and Z,b.) 

In the center-of-mass frame, we can perform the azimuthal integral trivially, so the phase space 

measure is given by 

(2%)‘~‘6’-’ (P - k, - k,) 

Imy1 - E/2) (4r)‘/’ . 
= (1 - +7(11/2,1- t/2) &Tq1 - 6) (1 sID. 

_ 
’ Bd( cos 0) 

(W.5) 
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where P = -k, - k,, and where B(z,y) = r(z)r(y)/I’(z + y) is the Euler beta function. 

The 1, integral can be evaluated by standard techniques, 

=e = r(1 -c/2) 4npl + 

(-1 4*r(l -g (12) (12)2Pila& 

x 
[ 
& S (1,1;2 + c/2;- (i2)/ (12)) 

+z -(!2) 1+c'a 

( ) 
- 

= (12) 
r(l+r/2)r(l -</2) go (-+-#)I 

= Pp- q2)rp+q2) 4~pl + (12)'[ii]' 
4*r(l -g (4 (12) (12) (i 4 

(T-h [-$$I) +cJ(E) 

(12)’ 
= (12)(2i)(ii)(il) 

(4n)"'r14(:r(;/2~(l+L/2) (z -,, (i2)) + O(E) 

The basic integral in I,.,,, 

U’=6) 

is traceless, and thus can be expressed in terms of the traceless tensors ?&.,““: 3 1 

‘p”~.“;p(2, i) = (-l)mk(pl . p-k?-+’ . . .k++‘pP’-+J+L .pP-) 
I 3 1 11 1 

!Q!J;;r(2,i) = T&;:"(2,i)- traces 
(vI.8) 

To do this, one performs a Passarino-V&man [19] reduction. One attaches a coefficient to 

each tensor. and writes 

y-‘Pw~Pw~ = =g, c4;m,1 (-$$) Q$;;” (2, i) W.9) 

The symmetry of the integrand forces C,;,,, = C4i,,m, reducing the fitteen possible coefficient 

functions to nine. One then contracts this equation with the tensors Z’,;,,, (m 5 I), which yields 

a set of nine equations for the C4;,,1. Finally, one solves the equations to obtain the coef&ient 
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so that only C4;o,~ contributes to &I,. Thus 

L + &b = 
(12)’ [2 i]’ 

(12)'[ii]'(i2)(2i) ( 

C’,O,O + c C’;,J 
?lX+,<* 1 

(ii)' 

= (i2)(2i)(ii)(ii) 
P(l- </2)r(1+6/2) 4~g "' 

4*rp -c) (4 04 

x 

i 

2 + [Pi)'- (12) Pi)]' In -(i2) -- 
e (Ii)' [ -1 (12) 

-(2 i) [il (1 i)' - 3 (12)(2i) t3(12)']' 

3 (~i)~ 
1 

(ii)' 

= (i2)(2i)(ii)(ii) 
(4r)‘/a rs(l-6/2)r(1 +e/2) 

4Tr(i - e) 

f o(e) 

x 

(vI.13) 

As to the remainin g integral, we may note that r4r. is more convergent than the following 

integral, 

I’. = ($).‘a l 
(l2)‘[ii]’ J d’-cLLPs(3,4) 

(31)1(41)‘[3i]‘[4i]f 

(4 1) (3 i) 
(vI.14) 

in which we have taken the absolute value of the integrand. But this latter integral is 

($)‘P l 
(i2)'[ii]' J &‘LIps(3,4) I(3 1) (4 i) 1 (vI.15) 

which is manifestly convergent. 
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Figure Captions 

Figure 1: The punctured torus represent a string one-loop amplitude. 

Figure 2: In the field theory limit the torus reduces to a loop. 

Figure 3: The @-Eke diagrams for the one-loop four-point glum amplitude. 

Figure 4: Labeled and ordered loops. 

Figure 5: The reduced diagram with trees amputated. 

Figure 6: The labeled reduced diagrams for the indices { 1,2,3} and {4,5} respectively associated 

with two distict color traces. 

Figure 7: The sole non-vanishing contribution to AdSI (- - ++ ). 

Figure 8: Diagrams which contribute to A,;, (llL],2+, 3-, 4+) 
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